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1. Introduction 

 
Various studies have been conducted to develop a 

high-accuracy multi-group cross section (MGXS) library 
to improve the accuracy of deterministic multi-group 
transport analyses. Although many outstanding methods 
have been discussed, the library generation approach that 
employs resonance treatment using background cross 
sections and reference spectra to produce self-shielded 
group cross sections is the most widely adopted in core 
design practice in Republic of Korea. [1-2] The Korea 
Atomic Energy Research Institute (KAERI) has 
developed its own library generation system based on 
this approach, and its performance has been validated in 
many studies. [1, 3-4] 

To further enhance prediction fidelity, Kyung Hee 
University conducted library correction research that 
modifies lattice code cross sections to follow reference 
Monte Carlo (MC) reaction rates. [4-5] For automated 
library optimization, the previous study verified that a 
heuristic-based library optimization approach can solve 
diverse benchmark problems with high accuracy. [6]  

However, that work was limited to a single objective 
focused on zero-burnup initial state reactivity error. 
Practical core analyses must also consider burnup 
behavior and core power distribution. Accordingly, this 
study extends the heuristic library optimization 
framework from a single-objective to a multi-objective 
and adopts a Non-dominated Sorting Genetic Algorithm 
II (NSGA-II) to search Pareto fronts over three 
objectives. [7] 

The target benchmark is a LEU+ soluble boron-free 
(SBF) small modular reactor (SMR) with enrichments 
ranging from 4.0 to 8.2 w/o. Under varied enrichment 
and coolant conditions, NSGA-II searches Pareto-
optimal solutions across the three objectives and derives 
corrected MGXS libraries. McCARD [8] is used as the 
reference MC code, and DeCART2D [9] is used for 
deterministic multi-group transport analysis. 

 
2. Methods  

 
2.1 Library Correction and Optimization 

 
This study uses the library correction system that can 

iteratively update the lattice code cross sections using 
correction factors derived from reaction rate ratio 
between the lattice code and the reference MC code. [5] 

For library optimization, the following library correction 
options must be specified:  

 
a. Correction reference model  
b. Round-wise target nuclide  
c. Nuclide-wise target cross section type  
d. Cross section-wise target temperature point 
 
Accordingly, library optimization can be conducted by 

modifying the library through appropriate combinations 
of these correction options and by searching for the 
combination that yields the most accurate analysis of the 
target benchmark. The heuristic algorithm varies 
correction options a–d, evaluates library performance 
and searches for a global optimum through iterative 
loops. In the previous study, conventional genetic 
algorithms (GA) and simulated annealing (SA) were 
applied. [6, 10-11] 

 
2.2 Multi-object Optimization using NSGA-II 
 

The introduction noted that a lattice transport code 
must produce accurate results for zero-burnup initial 
state reactivity, depletion behavior, and core power 
distribution. Accordingly, this study employs the multi-
objective optimization algorithm NSGA-II [7] for library 
optimization instead of conventional single-fitness 
heuristic methods.  

NSGA-II evaluates individuals encoded as 
combinations of library correction options and, using fast 
non-dominated sorting, classifies them into Pareto-
ranked fronts. The rank 0 front contains non-dominated 
solutions, meaning that no solution in this set is 
simultaneously inferior to another across all objectives. 
Elitism preserves higher-ranked solutions for the next 
generation, while crowding distance promotes a well-
spread distribution within a front. Offspring are 
generated from the Pareto set through crossover and 
mutation. 

  =  −   −   . (1) 

  =   . (2) 
 
The crowding distance for single objective axis in Eq. 

(1) is a normalized distances to neighboring solutions. 
The crowding distance of a single individual shown in 
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Eq. (2) is the sum of the crowding distances of all 
objective axes.   denotes the crowding distance,  
denotes the objective function type, and  denotes the 
index of the individual sorted by Pareto dominance. 
Larger crowding distances indicate less crowded regions 
in the front, and thus the corresponding individual is 
preferentially selected within the same rank. Figure 1 
presents the flowchart of the library optimization using 
NSGA-II in this study. 

 
Fig. 1. Flowchart of cross section library optimization using 
NSGA-II 

 
The objective functions of this study are the weighted 

averages of RMS errors for initial state, depletion, and 
power distribution problems, and these can be calculated 
using weights assigned to each benchmark problem 
group, as shown in Eq. (3). 

  = ∑ ,∑  , ℎ ,  ∈  {INIT, DEP, POW}. (3) 

   denotes the objective function subdivided into 
benchmark problem types; INIT (zero-burnup initial 
state), DEP (depletion), and POW (power distribution). 
The  denotes the benchmark group-wise weight and  
indicates the group number. Weights can be assigned 
according to the importance of each benchmark problem 
group. 

3. Preliminary Optimization for LEU+ SBF SMR 
Benchmark 

 
This section describes the preliminary optimization of 

a library for LEU+ SBF SMR design using NSGA-II. 
The reference MC code McCARD is calculated based on 
ENDF/B VII.1 version library. The statistical uncertainty 
of multiplication factor is about 10 pcm for INIT and 
POW problems, and 30 pcm for the DEP problem.  

  
3.1 Considered SMR Benchmark 

 
The considered benchmark is an LEU+ SMR 

problems [12] using fuel enrichments from 4.0 w/o to 8.2 
w/o. Excess reactivity is controlled by high content 
gadolinia BA, and stainless steel (SS304) is used as the 
reflector. Figures 2 and Table II illustrate the 
configurations of the LEU+ SMR 2D core and fuel 
assemblies. The benchmark set consists of 15 single-
assembly problems defined by five assembly types and 
three temperature conditions. Additionally, it includes 
one 2D core problem and one depletion problem burned 
up to 80 MWd/kgHM using an assembly with an 8.0 w/o 
enriched UO2 pin. Table I shows the description of the 
LEU+ SMR benchmark problems.  
 

Table I. Conditions of LEU+ benchmark problem 

Benchmark 
group 

Condition Temp 
ID T_Fuel 

[K] 
T_Clad 

[K] 
T_Mod 

[K] 
2D assembly 

(INIT, 15 
problems) 

900.0 
600.0 
300.0 

600.0 
600.0 
300.0 

600.0 
600.0 
300.0 

HFP 
HZP 
CZP 

2D assembly 
(DEP, 1 
problem) 

873.15 613.15 577.15  

2D core 
(INIT, POW, 
1 problem) 

873.15 613.15 577.15  

* Abbreviation: HFP, HZP, and CZP indicate Hot Full Power, Hot Zero 
Power, and Cold Zero Power temperature conditions. “Temp ID” is an 
identification index based on temperature conditions. 
 

 
Fig. 2. Configuration of LEU+ 2D core 
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Table II. Configuration of LEU+ fuel assemblies 
Assembly 

Type Configuration Note 

W40 
4.0 w/o main fuel 
No BA pin 

 

W55 
5.5 w/o main fuel 
32 BA pins 

 

W80 
8.0 w/o main fuel 
48 BA pins 

5.5 w/o zoned fuel 

W81 
4.0 w/o main fuel 
48 BA pins 

 

W82 
4.0 w/o main fuel 
48 BA pins 

 

* Abbreviation: BA indicates “Burnable Absorber” 
 

The fuel assemblies used in this study are called as 
W40, W55, W80, W81, and W82 according to the their 
main UO2 pins. For example, the W81 uses 8.1 w/o 
enrichment fuel mainly for its configuration. The W40 
assembly is a blanket assembly that is not containing 
burnable poison rods. Other assemblies are designed 
with high content gadolinia pins arranged with varying 
weight fractions. The W80 assembly contains zoned fuel 
with an enrichment of 5.5 w/o. As previously mentioned, 
the W80 assembly serves as the target problem for the 
DEP benchmark in this study. 
 
3.2 NSGA-II library optimization results 

 
A total of 30 generations were executed for the 

preliminary library optimization. Each generation 
consisted of a population of 10, and each individual 
encoded correction options for 5 correction rounds for 3 
nuclide groups. The correction target nuclide groups are 
uranium (235U, 238U), gadolinium (154Gd, 155Gd, 156Gd, 
157Gd, 158Gd, 160Gd), and hydrogen (1H).  

All benchmark problem groups are assigned a weight 
of 1.0. This means that the calculation results from all 
fifteen 2D assembly problems and a single result from 
the 2D core problem have the same effect on evaluating 
the MGXS library performance. The weighting of each 
benchmark problem group can be varied depending on 
the importance of the problem. 

NSGA-II starts from an uncorrected library in which 
no nuclide is corrected. Since the uncorrected library was 
generated without specific consideration for the LEU+ 
SMR benchmark system, it will exhibit significantly 
large initial reactivity errors. Although this uncorrected 
library is not usually used in reactor design practice, it is 
employed to ensure a fair initial starting point for the 
NSGA-II optimization. Tables III through V present 
representative optimization results for three objectives 
after 30 generations of NSGA-II optimization. 

 
 

Table III. LEU+ benchmark results at initial generation 

Ind* 
Weighted RMS Error Pareto 

Rank INIT* 
[pcm] 

DEP* 
[pcm] 

POW*  
[%] 

1 656 554 0.62 0 
2 656 554 0.62 0 
3 656 554 0.62 0 
4 656 554 0.62 0 
5 656 554 0.62 0 
6 656 554 0.62 0 
7 656 554 0.62 0 
8 656 554 0.62 0 
9 656 554 0.62 0 

10 656 554 0.62 0 
* Abbreviation: Ind indicates “Individual”. INIT, DEP, and POW 
indicate initial state, depletion, and core power distribution categories, 
respectively. 
 

Table IV. LEU+ benchmark results at 2nd generation 

Ind* 
Weighted RMS Error Pareto 

Rank INIT 
[pcm] 

DEP 
[pcm] 

POW 
[%] 

1 163 218 0.50 0 
2 72 188 0.76 0 
3 127 107 0.71 0 
4 101 190 0.56 0 
5 656 554 0.62 1 
6 656 554 0.62 1 
7 656 554 0.62 1 
8 656 554 0.62 1 
9 656 554 0.62 1 
10 119 218 0.72 1 

 
Table V. LEU+ benchmark results at 30th generation 

Ind* 
Weighted RMS Error Pareto 

Rank INIT 
[pcm] 

DEP 
[pcm] 

POW 
[%] 

1 92 258 0.46 0 
2 76 259 0.46 0 
3 79 77 0.52 0 
4 47 247 0.55 0 
5 132 218 0.48 0 
6 61 117 0.78 0 
7 110 203 0.48 0 
8 61 117 0.78 0 
9 56 118 0.57 0 
10 58 121 0.57 0 

 
In the initial generation, the weighted RMS errors 

were 656 pcm for INIT, 554 pcm for DEP, and 0.62% for 
POW problems. In the 2nd generation, a non-dominated 
solution set improving all three objectives was observed. 
At the 30th generation, various improved trade-off 
solutions were obtained at population.  

In the final generation, an appropriate solution can be 
selected from among various trade-offs. For instance, the 
4th individual yielded the most accurate result for the 
INIT benchmark. The 3rd individual showed the highest 
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accuracy for the DEP benchmark, and the 2nd individual 
(or the 1st) is most optimized for the POW benchmark. 
However, it was observed that the 2nd and 4th individuals 
exhibited significant errors in the DEP benchmark results. 
Therefore, the 3rd individual can be selected as the most 
balanced solution in this study.  

 For power distribution, the RMS error sensitivity to 
library correction is about 0.2%, and slight 
improvements were observed for evolved individuals. 
Since nuclide-wise correction factors are applied 
identically to the same materials within the 2D core, the 
normalized power distribution is analyzed as having low 
sensitivity to correction.  

Figures 3 through 5 present the LEU+ SMR 
benchmark results from the initial generation and 
representative individuals from the final generation for 
the INIT, DEP, and POW categories. 
 

 
Fig. 3. NSGA-II results for representative individuals at 
generation 30 for the LEU+ SMR benchmark, zero-burnup 
initial state reactivity difference (INIT). 
 

 
Fig. 4. NSGA-II optimization results of representative 
individuals at 30th generation for LEU+ SMR benchmark, 
depletion reactivity difference (DEP) 
 

 
Fig. 5. NSGA-II optimization results of representative 
individuals at 30th generation for LEU+ SMR benchmark,  
power distribution (POW) 
 

4. Conclusions 
 

This study presents a strategy for multi-objective 
optimization of a MGXS library based on the NSGA-II 
algorithm. The proposed algorithm produced improved 
non-dominated solution sets over 30 generations with 
respect to zero-burnup initial state reactivity, depletion 
behavior, and power distribution, and it demonstrated 
that the three objectives were optimized to reasonable 
levels. This NSGA-II–based optimization approach is 
expected to be applicable to optimize the various MGXS 
library corrections.  
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