Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Enabling Robust Parallel Tool Calling in Agentic Al via OS-Level Scheduling for the iPWR
Simulator

Seongsu Chae *°, Yonggyun Yu ?, Seung Geun Kim ?, Yujong Kim #*
* Applied Artificial Intelligence Section, KAERI, Daejeon 34057, Republic of Korea
b Department of Computer Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
* Corresponding author: yjkim@kaeri.re.kr

*Keywords : Model Context Protocol, parallel tool calling, agentic Al, OS-level scheduling, iPWR simulation

1. Introduction

Modern nuclear plant operations prioritize safety and
procedural compliance. As digital Instrumentation and
Control (I&C) and simulators generate increasingly
high-frequency data, operators must simultaneously log
events, check alarms, perform routine calculations, and
track trends, which raises cognitive load and the risk of
delay or omission. In this context, automation should be
introduced to assist operators rather than replace them,
by handling procedurally defined repetitive tasks and
reducing the risk of human error in nuclear power plant
operations. Within these boundaries, agentic artificial
intelligence (Agentic Al) is useful not for autonomous
operation but as a tool-invocation mechanism operating
under predefined authority and procedural constraints
[1]. It automates repetitive monitoring and structured
calculations, records actions and their rationales for
auditability, and supports decisions under human review.
At the same time, to maintain safety, the system must
continuously acquire and ingest simulator state and
instrumentation data while always providing immediate
responses to operator queries so that operator interaction
is not interrupted.

However, large language model (LLM) hosts that
underpin such agentic configurations generally enforce
session idle timeouts. In a sessionized host composed of
LM Studio to utilize the LLM and a Model Context
Protocol (MCP) server for tool control, long-running
tasks implemented as threads or subprocesses are
terminated when the session closes, or tool-call issuance
stalls. This degrades the user’s ability to check results in
time and take action.

We address this constraint with a minimal pattern that
decouples long-running tasks from the host session and
delegates their lifecycle to the Operating System (OS)
scheduler through OS-level reparenting. Workers start in
a detached state. Termination is handled safely at
sampling-cycle boundaries by polling a file-system
sentinel such as stop.txt. At invocation time an
acknowledgment is always returned immediately so
operator interaction is never blocked, and completion
results from long-running tasks are delivered even if the
original session drops. The focus is on execution-and-
delivery semantics rather than a particular framework.
Although we target an on-premises LM Studio plus MCP

deployment, the pattern applies to other hosts with
similar session constraints.

For evaluation we use the iPWR simulator as a testbed
[2]. It reproduces representative pressurized water
reactor scenarios in the SMR family and allows
simultaneous composition of long tasks such as
cooldown or heatup [3] with continuous monitoring and
short tasks such as reading neutron power at a specific
instant. Controlled scenarios and consistent monitoring
support reproducible comparative experiments that
assess parallel invocation and task reliability safely and
repeatedly.

We define the performance concepts used in the paper
as follows. Continuity means task survival when a
session terminates and guaranteed result delivery from a
later session if needed. Responsiveness means always
providing a first visible response upon request and
accepting subsequent commands without delay. Non-
blocking means one task does not prevent other tool
calls, so multiple tools can be invoked and responded to
immediately even while a long-running task is in
progress.

In summary, we propose execution-and-delivery
semantics that let operators observe and act without
interruption under host session timeouts. We validate the
approach on the iPWR simulator and then present an
empirical analysis of session-bound termination, the
design and implementation of the detach-and-reparent
pattern, and an evaluation against these metrics.

2. Concept: Parallel Tool Calling for MCP

2.1. Problems with Synchronous MCP Server

LLM Host MCP Server
Query ,
Tool 1 - Running Time Iminute
LLM Tool Calling ,

. Response

Tool 2 - Running Time Sminute

3 Result

Fig. 1. Conventional synchronous MCP server workflow.

In conventional MCP servers, tool invocation is
synchronous: once a user calls a tool, the session blocks
until the tool finishes, and no other actions can be
performed in the meantime. In particular, long-running

tasks such as continuous monitoring or reactor
heatup/cooldown monopolize the session, until they
complete, operators cannot invoke other tools,
undermining the immediacy required for query and
control.

To overcome this limitation, we execute long-running
jobs in the background while handling short, interactive
tools in parallel, with the goal of simultaneously
achieving non-blocking operation, continuity of data
collection, and interactive responsiveness.

2.2. Initial Idea

LLM Host MCP Server
Query
_— Tool Calling ,
. y LLM
5 Response Command 3
Additional
e Query.. 4 Result

Fig. 2. Multithreaded MCP server tool invocation workflow.

Each tool endpoint in the MCP server operates as the
primary request-response stream. When a long-running
tool (e.g., monitoring or heat-up/cool-down) is invoked,
the endpoint spawns a background subthread for that task
and returns immediately. This allows the LLM host to
continue servicing subsequent query/tool calling
requests, while the long-running task proceeds in a
separate thread that performs periodic data acquisition
and logging.

The experimental validation of this idea, its
limitations, and the refined design are presented in
Sections 3—4.

3. Baseline Experiment & Root Cause Analysis

To test the initial idea described in Section 2.2, we ran
a baseline on the iPWR simulator in Windows 10 with
LM Studio as the host with idle timeouts enabled, an
MCP server built on FastMCP [4], and the Qwen2.5-
32B-Instruct model. The long-running tool was
implemented as both a subordinate thread and a
subprocess, each launched by the tool endpoint. After
starting the long task for measured-value monitoring, the
endpoint returned immediately, a short read of neutron
power followed at once, the host remained non-blocking,
and monitoring value updated at 1 Hz initially. After
about 15 seconds of inactivity, the host idle timeout
triggered session cleanup, the MCP-parented worker was
terminated, and data and log updates stopped. In sum, the
baseline confirmed responsiveness and non-blocking
behavior, but continuity failed at the idle-timeout
boundary.

To understand this failure, we examined the system in
the same experimental environment as the baseline and

repeatedly observed that long-running tasks (threads and
subprocesses) were terminated once the host’s session
idle timeout (~15 sec) elapsed. Consequently,
background data collection ceased immediately after the
idle period; to identify the program responsible for the
session teardown, we tracked changes in active processes
using Windows Task Manager.

As a result, the observations converged on a single
mechanism. Specifically, the MCP server and the
threads/processes it creates are bound to the LM Studio
(host) session. When the session idle timeout is reached,
the host performs session cleanup, during which we
observed one JavaScript process and two Python
processes initiating the teardown. Thus, the MCP server
process and its dependent workers (threads/subprocesses)
are terminated together. For clarity, in this paper
“subthread” denotes an additional execution path created
within the same MCP server tool; “subprocess” denotes
a separate child process created by the MCP server tool;
and “session-management processes” refers to host-
launched auxiliary runtimes (e.g., Node.js or Python)
that maintain the session and transport. The specific
manifestations are as follows.

Table I: Session-Bound Termination Patterns of MCP
Workers under Host Idle Timeout

Worker Type Termination Patterns
When the MCP server process is
terminated during session cleanup.
threa
Subthread child threads vanish with it
— long-running tasks are interrupted.
Even with a separate process
boundary, the parent lineage remains
Subprocess the MCP server; when the session
ends, the child process is terminated
— liveness cannot be ensured.
Selective Forcibly killing a particular
termination of python/node spawned by the host may
session- give a brief illusion of survival, but it
management soon breaks host query handling
processes — unsuitable for practical use.

All failures stem from the session-coupled lifecycle
between the LLM host (LM Studio) and the MCP server.
As long as the parent—child lineage resides under the host
session, workers are reaped when the host cleans up the
session/pipe at idle timeout. Therefore, the necessary
remedy is to transfer parentage to the OS and grant the
worker an independent lifecycle (detached, OS-
parented). This requirement is realized in Section 4 via
session detachment and OS scheduler re-parenting
combined with a sentinel-based graceful shutdown.

4. Solution Design & Implementation

We separated the problematic long-running MCP tool
into an independent Python script and created a batch file
(.bat) to invoke it. We then registered that batch file with
the Windows Task Scheduler [5] and triggered it for
immediate execution “run now”. This makes the worker
OS-parented rather than host-session-parented, so it
continues running regardless of the host’s session idle
timeout. For termination, the worker checks on each
iteration for the presence of a file-system sentinel
(stop.txt); upon detection, it exits the loop and shuts
down cleanly. The execution and shutdown flow is
summarized in Fig. 3.

Window Task Scheduler

. . !
Executing the Long-Running Worker
.
MCP Server Scheduling and Immediate Execution of »(Windows as Parent)

the Long-Running Worker (Batch Script) "2
1 .

Tool1 - long-running tasks

Tool2 - Terminate Tasks
I ¢
Create stop.txt Ny ! ! _o .
— . s N1 stoptxt 1 Sentinel Polling
' !

Fig. 3. Scheduling the batch-launched long-running script via
Windows Task Scheduler and graceful shutdown using a file-
system sentinel (stop.txt).

Building on the workflow in Fig. 3, we implemented
the approach as follows.

MCP Server Tool 1
.
subprocess.run(
[
‘schtasks', '/Create', '/TN', task_name,
'/TR', run_command, '/SC', 'ONCE',
'/ST', run_time, '/F',
1, check=True, capture_output=True,
)
subprocess.run(
[
‘schtasks', '/Run', '/TN', task_name,
1, check=True, capture_output=True,
)
subprocess.run(
[
'schtasks', '/Delete', '/TN',
task_name, '/F',
1, check=True, capture_output=True,

Code 1. Invoking Windows Task Scheduler (schtasks) from
Python

Figure 3’s core flow is implemented with the three
schtasks calls in Code 1. The MCP server’s tool connects
the pre-prepared long-running script to a batch file (.bat)
and registers a one-shot task with
subprocess.run(['schtasks','/Create', ...]), then starts it
immediately with ['schtasks',/Run', ...]. Here,
task name is a unique identifier for the job (e.g.,
measured value monitoring task), run_command is the
batch file that launches the long-running script, and
run_time is a scheduled time required by the interface,

while the actual immediate start is performed by /Run.
After launch, ['schtasks','/Delete’, ...] removes the entry
to keep the scheduler namespace clean. The worker script
executes the long-running job at a fixed period, for
example 1 Hz, and on every iteration it polls for the
presence of the file-system sentinel stop.txt. When the
user invokes the termination tool, the MCP server creates
stop.txt in the corresponding workspace; the worker
detects it in the loop and exits to shut down cleanly.

This arrangement re-parents the worker to the
Windows Task Scheduler rather than to the host session,
granting an independent lifecycle that is unaffected by
the host’s session idle timeout and decoupling the long-
running execution from the request/response path so the
server can return immediately, effectively enabling other
tool invocation. We validated the approach on the iPWR
simulator; Section 5 reports the results.

5. Application to the iPWR Simulator and
Demonstration

This section applies the parallel tool-calling method of
Section 4 to the iPWR simulator and presents an end-to-
end usage flow. The demonstration proceeds with two
long-running tasks in parallel and an immediate short call:
(1) launch reactor cooldown; (ii) start measured-value
monitoring concurrently; and (iii) then invoke the short
task read neutron power to obtain the value immediately.
Figure 4 illustrates that the host returns a response right
after the long-running task is started, enabling the user to
issue additional tools without waiting.

Start monitoring and cool_down immediately.

qwen2.5-32b-k-m@q3_k_m
tools_cool_down({}) mep/ipwr-mep-server >
tools_background_save_predict_data_to_csv({) D

The Cool Down system has been initiated in the background. Please do not close the command
window that appears, as it is required for the process to complete. Once the task is done, please check

the command window.

Additionally, data collection for prediction has started in the background. Again, please keep the
command window open until the cool down and monitoring processes are completed.

You

Please let me know the current neutron power.

qen2.5-32b-k-m@q3_k_m
tools_read_neutron_power({"mode”: "read"} mep/ipwr-mep-server >

The current neutron power is 44.91%.

You

Please stop monitoring.

quen2.5-32b-k-miq3_k_m
tools_stop_save_predict_data_to_csv({) mep/ipwr-mep-server >

The data collection process has been successfully stopped and will terminate within 1 second.
Monitoring has ceased as requested.

Fig. 4. iPWR demo of non-blocking parallel tool invocation:
(a) continuous monitoring with concurrent reactor cooldown;
(b) immediate host responses including a short tool call (read
neutron power) while long-running tasks continue.

In the baseline experiment of Section 3, tool execution
stopped the moment session cleanup began due to the
host’s idle timeout (approximately 15 seconds). The
worker dependent on the MCP server was reaped and
terminated, the monitoring task halted, and, upon
forcibly terminating the program that manages the
session, further tool calls became impossible. In contrast,
after applying the detachment and OS reparenting
proposed in this paper, even under the same baseline
environment, timestamps continued at the configured 1
Hz period, reactor cooldown proceeded concurrently,
and the short task read neutron power responded
immediately upon invocation. From these results, we
emphasize three properties in the iPWR demo:

Table II: iPWR demo—key properties

Property Observation & Evidence
Even when a long-running task is
Responsiveness started, the MCP server returns an

immediate reply.

Because the long-running worker is
OS-parented and continues in the
background, the user can invoke other
control/query tools without waiting
(e.g., run cooldown while monitoring
is active).

Non-blocking

Continuous collection for the long-
running task is maintained regardless
of the host session idle timeout.
During the demo, monitor.csv
timestamps continued at the
configured 1 Hz period without
omission; upon a stop request, the
worker detected stop.txt and
terminated the loop(clean shutdown).

Continuity

In summary, this application case demonstrates in the
iPWR environment that simultaneous invocation of long-
running tools (monitoring/cooldown) achieves
uninterrupted parallel tool calling, and that, thanks to
immediate responses, short tasks such as reading neutron
power can be processed without issue.

6. Conclusions

This study resolves the session-bound lifecycle
problem, where long-running tasks are prematurely
terminated by the host session idle timeout, by using
session detachment and OS scheduler re-parenting
together with file-sentinel-based loop termination. In the
iPWR simulator the method ran continuous monitoring
in parallel with reactor cooldown while a short read of
neutron power returned immediately, demonstrating
continuous collection, immediate responses, and non-
blocking concurrent operation without —mutual
interference. The method operates reliably for long-

duration activities in complex reactor operating
procedures and maps directly to procedures such as
heatup and cooldown, boron concentration adjustment,
and control-rod maneuvers.

Going forward, we will consider linking the present
methodology’s parallel tool-calling MCP server with a
large language model trained on nuclear domain
knowledge and the iPWR operating manuals, and we
plan to evaluate, beginning with small pilots, a human-
in-the-loop operation in which standardized repetitive
tasks are proposed and executed by the model while
critical decisions and controls proceed only with operator
review and approval. In parallel, without disrupting the
existing Main Control Room workflow, we will
emphasize auditability (action and rationale logs),
separation of duties, and reinforcement of procedural
compliance, with the objective that long-running
monitoring continues under host idle timeouts and that
short queries and control actions are handled without
delay, thereby contributing to practical automation.

On the other hand, because MCP exposes tools
through a common protocol with stable schemas and
transport, adding, swapping, or relocating capabilities is
comparatively easy, and portability can be expected
across OS-native job schedulers on Windows, Linux, and
macOS and across diverse LLM hosts; accordingly, we
will consider packaging an iPWR-simulator-dedicated
MCP server together with the iPWR simulator as a
training and practice kit so that parallel orchestration and
fault-recovery procedures can be practiced safely and
repeatedly without any plant intervention, contributing
as an educational product.

ACKNOWLEDGEMENTS

This work was supported in part by Korea Atomic
Energy Research Institute R&D Program under Grant
KAERI-524540-25.

REFERENCES

[11 Y. P. Lee and J. Cha, Large Language Model Agent for
Nuclear Reactor Operation Assistance, Nuclear Engineering
and Technology, Vol. 57, Article 103842, 2025.
doi:10.1016/j.net.2025.103842

[2] International Atomic Energy Agency (IAEA), Integral
Pressurized Water Reactor Simulator Manual, Training Course
Series No. 65, Vienna: IAEA, 2017.

[3] International Atomic Energy Agency (IAEA), Integral
Pressurized Water Reactor Simulator Manual: Exercise
Handbook, Training Course Series No. 65, Vienna: IAEA,
2017.

[4] FastMCP, Welcome to FastMCP 2.0!, Getting Started,
2025. (accessed Jul. 25, 2025).

[5] Microsoft, Task Scheduler Reference, Microsoft Learn,
2019. (accessed Aug. 7, 2025).

