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1. Introduction 
 

Modern nuclear plant operations prioritize safety and 
procedural compliance. As digital Instrumentation and 
Control (I&C) and simulators generate increasingly 
high-frequency data, operators must simultaneously log 
events, check alarms, perform routine calculations, and 
track trends, which raises cognitive load and the risk of 
delay or omission. In this context, automation should be 
introduced to assist operators rather than replace them, 
by handling procedurally defined repetitive tasks and 
reducing the risk of human error in nuclear power plant 
operations. Within these boundaries, agentic artificial 
intelligence (Agentic AI) is useful not for autonomous 
operation but as a tool-invocation mechanism operating 
under predefined authority and procedural constraints 
[1]. It automates repetitive monitoring and structured 
calculations, records actions and their rationales for 
auditability, and supports decisions under human review. 
At the same time, to maintain safety, the system must 
continuously acquire and ingest simulator state and 
instrumentation data while always providing immediate 
responses to operator queries so that operator interaction 
is not interrupted. 

However, large language model (LLM) hosts that 
underpin such agentic configurations generally enforce 
session idle timeouts. In a sessionized host composed of 
LM Studio to utilize the LLM and a Model Context 
Protocol (MCP) server for tool control, long-running 
tasks implemented as threads or subprocesses are 
terminated when the session closes, or tool-call issuance 
stalls. This degrades the user’s ability to check results in 
time and take action. 

We address this constraint with a minimal pattern that 
decouples long-running tasks from the host session and 
delegates their lifecycle to the Operating System (OS) 
scheduler through OS-level reparenting. Workers start in 
a detached state. Termination is handled safely at 
sampling-cycle boundaries by polling a file-system 
sentinel such as stop.txt. At invocation time an 
acknowledgment is always returned immediately so 
operator interaction is never blocked, and completion 
results from long-running tasks are delivered even if the 
original session drops. The focus is on execution-and-
delivery semantics rather than a particular framework. 
Although we target an on-premises LM Studio plus MCP 

deployment, the pattern applies to other hosts with 
similar session constraints. 

For evaluation we use the iPWR simulator as a testbed 
[2]. It reproduces representative pressurized water 
reactor scenarios in the SMR family and allows 
simultaneous composition of long tasks such as 
cooldown or heatup [3] with continuous monitoring and 
short tasks such as reading neutron power at a specific 
instant. Controlled scenarios and consistent monitoring 
support reproducible comparative experiments that 
assess parallel invocation and task reliability safely and 
repeatedly. 

We define the performance concepts used in the paper 
as follows. Continuity means task survival when a 
session terminates and guaranteed result delivery from a 
later session if needed. Responsiveness means always 
providing a first visible response upon request and 
accepting subsequent commands without delay. Non-
blocking means one task does not prevent other tool 
calls, so multiple tools can be invoked and responded to 
immediately even while a long-running task is in 
progress. 

In summary, we propose execution-and-delivery 
semantics that let operators observe and act without 
interruption under host session timeouts. We validate the 
approach on the iPWR simulator and then present an 
empirical analysis of session-bound termination, the 
design and implementation of the detach-and-reparent 
pattern, and an evaluation against these metrics. 
 

2. Concept: Parallel Tool Calling for MCP 
 
2.1. Problems with Synchronous MCP Server 
 

 
 
Fig. 1. Conventional synchronous MCP server workflow. 

 
In conventional MCP servers, tool invocation is 

synchronous: once a user calls a tool, the session blocks 
until the tool finishes, and no other actions can be 
performed in the meantime. In particular, long-running 



 
 

 

tasks such as continuous monitoring or reactor 
heatup/cooldown monopolize the session, until they 
complete, operators cannot invoke other tools, 
undermining the immediacy required for query and 
control. 

To overcome this limitation, we execute long-running 
jobs in the background while handling short, interactive 
tools in parallel, with the goal of simultaneously 
achieving non-blocking operation, continuity of data 
collection, and interactive responsiveness. 

 
2.2. Initial Idea 
 

 
 
Fig. 2. Multithreaded MCP server tool invocation workflow. 
 

Each tool endpoint in the MCP server operates as the 
primary request–response stream. When a long-running 
tool (e.g., monitoring or heat-up/cool-down) is invoked, 
the endpoint spawns a background subthread for that task 
and returns immediately. This allows the LLM host to 
continue servicing subsequent query/tool calling 
requests, while the long-running task proceeds in a 
separate thread that performs periodic data acquisition 
and logging.  

The experimental validation of this idea, its 
limitations, and the refined design are presented in 
Sections 3–4. 
 

3. Baseline Experiment & Root Cause Analysis 
 

To test the initial idea described in Section 2.2, we ran 
a baseline on the iPWR simulator in Windows 10 with 
LM Studio as the host with idle timeouts enabled, an 
MCP server built on FastMCP [4], and the Qwen2.5-
32B-Instruct model. The long-running tool was 
implemented as both a subordinate thread and a 
subprocess, each launched by the tool endpoint. After 
starting the long task for measured-value monitoring, the 
endpoint returned immediately, a short read of neutron 
power followed at once, the host remained non-blocking, 
and monitoring value updated at 1 Hz initially. After 
about 15 seconds of inactivity, the host idle timeout 
triggered session cleanup, the MCP-parented worker was 
terminated, and data and log updates stopped. In sum, the 
baseline confirmed responsiveness and non-blocking 
behavior, but continuity failed at the idle-timeout 
boundary.  

To understand this failure, we examined the system in 
the same experimental environment as the baseline and 

repeatedly observed that long-running tasks (threads and 
subprocesses) were terminated once the host’s session 
idle timeout (~15 sec) elapsed. Consequently, 
background data collection ceased immediately after the 
idle period; to identify the program responsible for the 
session teardown, we tracked changes in active processes 
using Windows Task Manager. 

As a result, the observations converged on a single 
mechanism. Specifically, the MCP server and the 
threads/processes it creates are bound to the LM Studio 
(host) session. When the session idle timeout is reached, 
the host performs session cleanup, during which we 
observed one JavaScript process and two Python 
processes initiating the teardown. Thus, the MCP server 
process and its dependent workers (threads/subprocesses) 
are terminated together. For clarity, in this paper 
“subthread” denotes an additional execution path created 
within the same MCP server tool; “subprocess” denotes 
a separate child process created by the MCP server tool; 
and “session-management processes” refers to host-
launched auxiliary runtimes (e.g., Node.js or Python) 
that maintain the session and transport. The specific 
manifestations are as follows. 

 
Table I: Session-Bound Termination Patterns of MCP 

Workers under Host Idle Timeout 
 

Worker Type Termination Patterns 

Subthread 

When the MCP server process is 
terminated during session cleanup, 
child threads vanish with it  
→ long-running tasks are interrupted. 

Subprocess 

Even with a separate process 
boundary, the parent lineage remains 
the MCP server; when the session 
ends, the child process is terminated  
→ liveness cannot be ensured. 

Selective 
termination of 

session-
management 

processes 

Forcibly killing a particular 
python/node spawned by the host may 
give a brief illusion of survival, but it 
soon breaks host query handling  
→ unsuitable for practical use. 

 
All failures stem from the session-coupled lifecycle 

between the LLM host (LM Studio) and the MCP server. 
As long as the parent–child lineage resides under the host 
session, workers are reaped when the host cleans up the 
session/pipe at idle timeout. Therefore, the necessary 
remedy is to transfer parentage to the OS and grant the 
worker an independent lifecycle (detached, OS-
parented). This requirement is realized in Section 4 via 
session detachment and OS scheduler re-parenting 
combined with a sentinel-based graceful shutdown. 

 
 
 
 



 
 

 

4. Solution Design & Implementation 
 

We separated the problematic long-running MCP tool 
into an independent Python script and created a batch file 
(.bat) to invoke it. We then registered that batch file with 
the Windows Task Scheduler [5] and triggered it for 
immediate execution “run now”. This makes the worker 
OS-parented rather than host-session-parented, so it 
continues running regardless of the host’s session idle 
timeout. For termination, the worker checks on each 
iteration for the presence of a file-system sentinel 
(stop.txt); upon detection, it exits the loop and shuts 
down cleanly. The execution and shutdown flow is 
summarized in Fig. 3. 
 

 
 

Fig. 3. Scheduling the batch-launched long-running script via 
Windows Task Scheduler and graceful shutdown using a file-
system sentinel (stop.txt). 
 

Building on the workflow in Fig. 3, we implemented 
the approach as follows. 
 
# MCP Server Tool 1 
# … 
subprocess.run( 
    [ 
        'schtasks', '/Create', '/TN', task_name, 
        '/TR', run_command, '/SC', 'ONCE', 
        '/ST', run_time, '/F', 
    ], check=True, capture_output=True, 
) 
subprocess.run( 
    [ 
        'schtasks', '/Run', '/TN', task_name, 
    ], check=True, capture_output=True, 
) 
subprocess.run( 
    [ 
        'schtasks', '/Delete', '/TN',  

task_name, '/F', 
    ], check=True, capture_output=True, 
) 
 

Code 1. Invoking Windows Task Scheduler (schtasks) from 
Python 
 
Figure 3’s core flow is implemented with the three 

schtasks calls in Code 1. The MCP server’s tool connects 
the pre-prepared long-running script to a batch file (.bat) 
and registers a one-shot task with 
subprocess.run(['schtasks','/Create', …]), then starts it 
immediately with ['schtasks','/Run', …]. Here, 
task_name is a unique identifier for the job (e.g., 
measured value monitoring task), run_command is the 
batch file that launches the long-running script, and 
run_time is a scheduled time required by the interface, 

while the actual immediate start is performed by /Run. 
After launch, ['schtasks','/Delete', …] removes the entry 
to keep the scheduler namespace clean. The worker script 
executes the long-running job at a fixed period, for 
example 1 Hz, and on every iteration it polls for the 
presence of the file-system sentinel stop.txt. When the 
user invokes the termination tool, the MCP server creates 
stop.txt in the corresponding workspace; the worker 
detects it in the loop and exits to shut down cleanly.  

This arrangement re-parents the worker to the 
Windows Task Scheduler rather than to the host session, 
granting an independent lifecycle that is unaffected by 
the host’s session idle timeout and decoupling the long-
running execution from the request/response path so the 
server can return immediately, effectively enabling other 
tool invocation. We validated the approach on the iPWR 
simulator; Section 5 reports the results. 

 
5. Application to the iPWR Simulator and 

Demonstration 
 

This section applies the parallel tool-calling method of 
Section 4 to the iPWR simulator and presents an end-to-
end usage flow. The demonstration proceeds with two 
long-running tasks in parallel and an immediate short call: 
(i) launch reactor cooldown; (ii) start measured-value 
monitoring concurrently; and (iii) then invoke the short 
task read neutron power to obtain the value immediately. 
Figure 4 illustrates that the host returns a response right 
after the long-running task is started, enabling the user to 
issue additional tools without waiting. 
 

 
 
Fig. 4. iPWR demo of non-blocking parallel tool invocation: 
(a) continuous monitoring with concurrent reactor cooldown; 
(b) immediate host responses including a short tool call (read 
neutron power) while long-running tasks continue. 
 



 
 

 

In the baseline experiment of Section 3, tool execution 
stopped the moment session cleanup began due to the 
host’s idle timeout (approximately 15 seconds). The 
worker dependent on the MCP server was reaped and 
terminated, the monitoring task halted, and, upon 
forcibly terminating the program that manages the 
session, further tool calls became impossible. In contrast, 
after applying the detachment and OS reparenting 
proposed in this paper, even under the same baseline 
environment, timestamps continued at the configured 1 
Hz period, reactor cooldown proceeded concurrently, 
and the short task read neutron power responded 
immediately upon invocation. From these results, we 
emphasize three properties in the iPWR demo: 

 
Table Ⅱ: iPWR demo—key properties 

 

Property Observation & Evidence 

Responsiveness 
Even when a long-running task is 
started, the MCP server returns an 
immediate reply. 

Non-blocking 

Because the long-running worker is 
OS-parented and continues in the 
background, the user can invoke other 
control/query tools without waiting 
(e.g., run cooldown while monitoring 
is active). 

Continuity 

Continuous collection for the long-
running task is maintained regardless 
of the host session idle timeout. 
During the demo, monitor.csv 
timestamps continued at the 
configured 1 Hz period without 
omission; upon a stop request, the 
worker detected stop.txt and 
terminated the loop(clean shutdown). 

 
In summary, this application case demonstrates in the 

iPWR environment that simultaneous invocation of long-
running tools (monitoring/cooldown) achieves 
uninterrupted parallel tool calling, and that, thanks to 
immediate responses, short tasks such as reading neutron 
power can be processed without issue. 
 

6. Conclusions 
 

This study resolves the session-bound lifecycle 
problem, where long-running tasks are prematurely 
terminated by the host session idle timeout, by using 
session detachment and OS scheduler re-parenting 
together with file-sentinel-based loop termination. In the 
iPWR simulator the method ran continuous monitoring 
in parallel with reactor cooldown while a short read of 
neutron power returned immediately, demonstrating 
continuous collection, immediate responses, and non-
blocking concurrent operation without mutual 
interference. The method operates reliably for long-

duration activities in complex reactor operating 
procedures and maps directly to procedures such as 
heatup and cooldown, boron concentration adjustment, 
and control-rod maneuvers.  

Going forward, we will consider linking the present 
methodology’s parallel tool-calling MCP server with a 
large language model trained on nuclear domain 
knowledge and the iPWR operating manuals, and we 
plan to evaluate, beginning with small pilots, a human-
in-the-loop operation in which standardized repetitive 
tasks are proposed and executed by the model while 
critical decisions and controls proceed only with operator 
review and approval. In parallel, without disrupting the 
existing Main Control Room workflow, we will 
emphasize auditability (action and rationale logs), 
separation of duties, and reinforcement of procedural 
compliance, with the objective that long-running 
monitoring continues under host idle timeouts and that 
short queries and control actions are handled without 
delay, thereby contributing to practical automation.  

On the other hand, because MCP exposes tools 
through a common protocol with stable schemas and 
transport, adding, swapping, or relocating capabilities is 
comparatively easy, and portability can be expected 
across OS-native job schedulers on Windows, Linux, and 
macOS and across diverse LLM hosts; accordingly, we 
will consider packaging an iPWR-simulator-dedicated 
MCP server together with the iPWR simulator as a 
training and practice kit so that parallel orchestration and 
fault-recovery procedures can be practiced safely and 
repeatedly without any plant intervention, contributing 
as an educational product. 
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