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1. Introduction 

 

In nuclear power plants, measurement instruments 

continuously generate real-time signals that indicate the 

operational state of individual components and systems. 

These signals play a pivotal role in plant operation and 

control, providing operators with essential information to 

ensure safe operation and structural integrity. 

Consequently, the accuracy and reliability of 

measurement signals are of critical importance in fatigue 

monitoring and structural integrity assessment. 

To evaluate the fatigue life and structural integrity of 

major components and piping, the Nuclear Fatigue 

Monitoring System (NuFMS) utilizes measurement 

signals obtained from the Plant Monitoring System (PMS) 

to compute cumulative fatigue usage factors [1]. In actual 

operation, however, these signals are often contaminated 

by spurious signals-including noise, drift, and impulsive 

outliers-that compromise the accuracy of fatigue 

calculations, potentially leading to overly conservative 

predictions or misinterpretations of structural reliability. 

Traditional fault signal detection has relied on 

statistical methods such as the z-score, which identifies 

deviations from the mean and standard deviation, and the 

Mahalanobis distance, which considers correlations 

among multiple variables. While effective under certain 

conditions, these methods are susceptible to high false 

alarm rates and degraded accuracy, particularly when 

measurement signals exhibit significant variability, 

nonlinear characteristics, or pronounced temporal 

correlations. 

To overcome these challenges, this study introduces a 

Long Short-Term Memory (LSTM) network for detecting 

spurious signals in PMS data. LSTM networks effectively 

capture temporal dependencies across multiple time 

scales, allowing more robust recognition of underlying 

patterns compared with traditional statistical techniques. 

The proposed approach demonstrates improved reliability 

in spurious signal detection, thereby contributing to more 

accurate fatigue evaluations within NuFMS. 

 

2. Proposed Condition Monitoring System 

 

2.1 Overall Framework 

The overall framework of the proposed condition 

monitoring system is illustrated in Fig. 1. In this study, 

we propose a condition monitoring system capable of 

fault signal detection. The system consists of four main 

processes: (i) data acquisition and preprocessing, (ii) 

interval segmentation and fault signal labeling, (iii) 

model training, and (iv) evaluation and validation. In the 

preprocessing stage, multi-sensor data are classified into 

non-fault and fault signals, followed by standardization 

procedures. The entire system employs an LSTM-based 

classifier to perform fault signal detection. 

 

 
Fig. 1. Overview of the proposed condition monitoring 

system 

 

3. Methodology 

 

3.1 Data Acquisition and preprocessing 

3.1.1 Data Acquisition 

In this study, 22 key variables from OPR-1000 

pressurized water reactor (PWR) were selected as the 

primary dataset. The raw data were obtained from the 

Plant Information (PI) system over a period of 

approximately 14 years, spanning from January 1, 2006, 

to December 31, 2019. Among these, the records from 

2006 to 2016 were utilized for model training, while the 

records from 2017 to 2019 were employed for testing and 

validation. Each variable reflects the operational states of 

major systems and components in the nuclear  
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power plant, and the corresponding signal types and 

measurement units are summarized in Table 1. 

 

3.1.2 Data Characteristics 

The measurements consist of both regularly recorded 

values at midnight each day and additional event-based  

 

entries triggered by changes in the monitored signals. As 

a result, the intervals between records are irregular, and it 

is uncommon for multiple variables to be recorded 

simultaneously within the same time step. These 

characteristics pose limitations in directly capturing the 

temporal correlations among variables. 

 

3.1.3 Data Interpolation 

To address the aforementioned issues, missing values 

in each variable were first imputed using linear 

interpolation. Subsequently, the entire dataset was 

resampled at one-minute intervals to normalize all 

variables onto a common time axis. Through this process, 

the irregular time series were transformed into uniform 

sequences, thereby enabling inter-variable comparisons 

and constructing input data suitable for LSTM-based 

learning. 

 

3.1.4 Signal Fault Modes 

Spurious signals encountered in nuclear power plant 

instrumentation are essentially similar to those observed 

in general industrial systems. Signal faults can arise from 

various causes, including: (i) hardware defects of the 

measuring instruments, (ii) adverse environmental 

conditions such as high temperature or radiation, (iii) 

electronic or mechanical failures of transducers during 

signal transmission, and (iv) malfunctions in 

communication networks. These faults may manifest in 

several characteristic forms, such as spikes, drifts, 

saturation, and stuck signals, as illustrated in Fig. 2 [2]. 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Examples of Signal Fault Patterns by Measurement 

Fault Categories 

 

Similar fault patterns were observed in the dataset used in 

this study. Specifically, impulse-type outliers, interval- 

based stuck signals, drifts, and loss of redundancy 

consistency among correlated sensors were identified,  

which are consistent with typical signal faults in 

industrial plants. 

 

3.1.5 Dataset Partitioning 

The dataset was divided by time period, with data from 

2006–2016 used for training, and data from 2017–2019 

employed for validation as an independent test set. Each 

year contained major operational events, such as 

unplanned trips and scheduled overhauls (OH). Based on 

these events, the spurious signal detection model was 

trained and evaluated in this study. 

 

3.1.6 Data Normalization 

To compensate for differences in the distribution of 

variables and to prevent certain variables from 

disproportionately influencing the model training, z-score 

normalization was applied. This normalization ensured 

that all input variables had zero mean and unit variance, 

thereby improving training stability and convergence 

speed. The normalization process is defined as: 

𝑥′ =
𝑥 − 𝜇

𝜎
 (1) 

where 𝑥 denotes the original value, 𝜇 the mean, and 𝜎 the 

standard deviation of each variable. 

 

 

 

 

Table 1. Variable Description  

  Variable Type Unit Measurement point Description 

NP1 ~ NP4 AI % Power channels Nuclear Power 

HL1 ~ HL3 AI ℃ Each loop Hot Leg Hot Leg Temperature 

CL1 ~ CL3 AI ℃ Each loop Cold Leg Cold Leg Temperature 

Srg_Temp AI ℃ Pressurizer Pressurizer Surge Line Temperature 

PZR_W_Temp AI ℃ Pressurizer Pressurizer Water Temperature 

PZR_S_Temp AI ℃ Pressurizer Pressurizer Steam Temperature 

PZR_Pres1 ~ 5 AI MPa Pressurizer Pressurizer Pressure 

Spr1 ~ 2_Temp AI ℃ Pressurizer spray Pressurizer spray Temperature 

Chrg, Let_Temp AI ℃ Chemical Volume Control System Charging, Letdown Temperature 
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3.2 Segmentation and Fault signal Labeling 

3.2.1 Data Segmentation 

In this study, the time series data were divided into 

smaller segments according to predefined criteria, and 

each segment was assessed for the presence of fault 

signals. To this end, two types of intervals were defined: 

 

⚫ Transient Interval: the period during which a 

signal exceeds a predefined threshold and remains 

unstable until it returns within the threshold range. 

 

 

 

⚫ Stable Interval: the period during which a signal 

fluctuates within the threshold range without 

exhibiting abrupt changes. 

 

The thresholds were determined based on the 

distribution of short-term variations (Δx) observed under 

normal operating conditions for each variable. 

Specifically, the short-term fluctuation range in normal 

intervals was statistically quantified, and variable-

specific thresholds were assigned to reflect individual 

characteristics of each signal. 

In addition, the duration of each segment was limited 

to a maximum of 120 minutes. This constraint was 

imposed to ensure that when local fault signals (e.g., 

slowly drifting signals or anomalous values occurring 

within an otherwise normal trend) were present, the 

segmentation allowed such fault signals to be isolated 

without misclassifying the surrounding normal data as 

spurious signals. Consequently, even in cases where 

normal and fault data coexisted within the same interval, 

this approach enabled the effective extraction of local 

fault signals while minimizing false detections. 

 

3.2.2 Fault signal Labeling 

Based on the segmented intervals, a first-stage 

labeling process was performed using statistical 

techniques. The standard deviation and z-score methods 

were applied to each interval to detect values deviating 

from the normal distribution range. 

However, such statistical approaches exhibited 

limitations, as they occasionally misclassified normal 

fluctuations under steady-state operating conditions as 

fault signals. In other words, physically valid variations 

were sometimes falsely labeled as fault signals simply 

because they exceeded mathematical thresholds. 

To address this issue, a domain knowledge-based 

review procedure involving researchers and plant 

operators was incorporated following the initial labeling. 

Each interval was manually examined and validated to 

correct the false detections produced by the statistical 

methods. Through this process, the final ground truth 

dataset was constructed.  

 

3.3 Model Training 

In this study, an LSTM (Long Short-Term Memory)–

based classification model was designed for spurious 

signal detection using time series data. The proposed  

model adopts a many-to-one architecture, in which each 

segmented sequence is provided as input, and the model 

is trained to determine whether the given interval 

contains fault data. The overall architecture of the 

proposed LSTM model is illustrated in Fig. 3 [3]. 

LSTM networks have a structural advantage in 

learning both long- and short-term dependencies in time 

series. This enables the model not only to capture 

instantaneous fault signals but also to reflect dynamic 

patterns accumulated over a period of time. 

Accordingly, the data of each interval are processed 

sequentially, and the final hidden state is used to output 

the classification result at the segment level. 

The input data consist of 22 key variables that were 

preprocessed and normalized onto a common one-

minute time axis, with each interval having a maximum 

length of 120 minutes. During training, each interval 

was transformed into a fixed-length sequence and fed 

into the model. The labels were assigned according to 

the presence or absence of fault signals in the 

corresponding interval (0: normal, 1: fault). 

In particular, to address the severe class imbalance in 

the dataset, a higher weight was assigned to the fault 

signal class during the loss function calculation, as 

expressed in the following weighted cross-entropy 

formulation: 

𝑤 =
𝑁𝑛𝑒𝑔

max(𝑁𝑝𝑜𝑠, 1)
 (2) 

𝐿 =
1

𝑁
∑(−(1 − 𝑦𝑖) log(1 − 𝑝𝑖) − 𝑦𝑖𝑤𝑙𝑜𝑔(𝑝𝑖))

𝑁

𝑖=1

 (3) 

 

where 𝑁𝑛𝑒𝑔 is the total number of normal (negative) 

samples, 𝑁𝑝𝑜𝑠 is the total number of fault (positive) 

samples, respectively. This weighting ensures that the 

contribution of the minority (fault) class is amplified 

relative to the majority (normal) class, thereby 

encouraging the model to be more sensitive to fault 

signal detection. 
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Fig.3 LSTM many-to-one structure 

 

4. Results 

 

In this study, the fault signal detection model was first 

applied to the NP among the key variables. The NP signal 

was chosen as the initial case study because it directly 

represents the overall operating condition of the plant, 

responds sensitively to system fault signals and sensor 

malfunctions, and is one of the core input parameters used 

in NuFMS fatigue evaluations. 

 

4.1 Model performance Evaluation 

The performance metrics of the LSTM-based fault 

signal detection model for the NP signal are summarized 

in Table 2. The overall accuracy reached 98.4%, 

indicating high predictive performance. For the normal 

class, the model achieved excellent results with a 

precision of 1.00, recall of 0.98, and F1-score of 0.99, 

demonstrating stable and consistent classification. In 

contrast, the performance for the fault class was more 

limited. The precision was only 0.28, meaning that a 

substantial number of normal signals were incorrectly 

classified as fault signals, while the recall was 0.905, 

showing that most actual fault signals were successfully 

detected. Consequently, the F1-score for the fault class 

was 0.43. 

The confusion matrix (Fig. 4) provides further insight 

into the model’s predictions. As shown, a portion of 

normal data was misclassified as fault signals (221 cases), 

while the majority of fault signals were correctly 

identified (86 cases). However, a small number of fault 

signals were incorrectly classified as normal (9 cases). 

This indicates that the model maintains high sensitivity in 

fault signal detection but still suffers from false alarms. 

 

4.2 Discussion 

The low precision for the fault class can be explained 

primarily by the severe class imbalance in the dataset—

only 95 fault signals (about 0.7%) were included out of 

14,537 test samples—as well as the influence of 

concurrent fault signals in other variables. In practice, 

when fault signals occurred simultaneously in multiple 

variables, the entire interval was labeled as fault. As a 

result, the NP signal was also judged as anomalous, even 

in cases where its own deviation was less distinct. 

These results are summarized numerically in Table 2. The 

evaluation of the NP signal demonstrates the potential 

applicability of the proposed LSTM-based approach to 

NuFMS signal validation. However, further studies 

should extend this methodology to other key plant 

variables to assess its robustness and generalizability. 

Table 2. Performance metrics of the LSTM classifier for NP 

Class Precision Recall F1-score Segment 

Non-Fault 1.000 0.980 0.990 14,442 

Fault 0.280 0.905 0.428 95 

※ Accuracy: 0.984 

 
Fig.4 Confusion matrix of fault signal detection results for NP 

 

5. Conclusion 

 

This study applied an LSTM-based fault signal 

detection method to address the problem of spurious 

signals that undermine the reliability of measurement 

data in the NuFMS. To this end, major measurement 

variables from OPR-1000 pressurized water reactor 

(PWR) were collected, preprocessed, segmented, and 

labeled to construct a training dataset, and the nuclear 

power output signal (NP) was used for model training 

and evaluation. 

The experimental results showed that the proposed 

LSTM model achieved a high recall of 0.905, 

successfully detecting the majority of fault signals. 

However, the precision was limited to 0.280, indicating 

that many normal signals were misclassified as fault 

signals. This low precision is interpreted as being caused 

primarily by the severe class imbalance in the test 

dataset, in which fault signals accounted for only about 

0.7% of all samples, as well as the concurrent 

occurrence of spurious signals in other variables, which 
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caused NP intervals to be classified as fault even when 

the NP signal itself did not show a distinct deviation. 

Nevertheless, the study demonstrated the potential to 

automate spurious signal detection, which has 

traditionally relied on manual review. Since the NP 

signal is a core parameter directly used in NuFMS 

fatigue evaluations, the performance of the proposed 

model provides an important case study for assessing the 

feasibility of real-world application. 

Future research directions include: (i) applying fault 

signal data augmentation techniques to alleviate class 

imbalance, (ii) developing a hybrid fault signal detection 

framework that integrates statistical detection methods, 

PCA-based dimensionality reduction, and probability 

density function-based thresholding [4], (iii) extending 

the validation to other key plant measurement variables 

beyond NP. (iv) exploring the use of autoencoder-based 

architectures, such as LSTM-AE, for not only detecting 

spurious signals but also reconstructing and restoring 

corrupted measurements. 

Accordingly, the proposed approach is expected to 

substantially improve the reliability of NuFMS fatigue 

assessments by overcoming the inherent limitations of 

manual inspection and providing a systematic, 

automated validation process for PMS signals. In 

particular, the establishment of an automated signal 

validation framework ensures both consistency and 

efficiency, which in the long term can contribute not 

only to enhancing the accuracy of fatigue life 

evaluations but also to strengthening overall plant safety 

and facilitating regulatory compliance in nuclear power 

plant operations. 
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