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1. Introduction

In nuclear power plants, measurement instruments
continuously generate real-time signals that indicate the
operational state of individual components and systems.
These signals play a pivotal role in plant operation and
control, providing operators with essential information to
ensure safe operation and structural integrity.
Consequently, the accuracy and reliability of
measurement signals are of critical importance in fatigue
monitoring and structural integrity assessment.

To evaluate the fatigue life and structural integrity of
major components and piping, the Nuclear Fatigue
Monitoring System (NuFMS) utilizes measurement
signals obtained from the Plant Monitoring System (PMS)
to compute cumulative fatigue usage factors [1]. In actual
operation, however, these signals are often contaminated
by spurious signals-including noise, drift, and impulsive
outliers-that compromise the accuracy of fatigue
calculations, potentially leading to overly conservative
predictions or misinterpretations of structural reliability.

Traditional fault signal detection has relied on
statistical methods such as the z-score, which identifies
deviations from the mean and standard deviation, and the
Mahalanobis distance, which considers correlations
among multiple variables. While effective under certain
conditions, these methods are susceptible to high false
alarm rates and degraded accuracy, particularly when
measurement signals exhibit significant variability,
nonlinear characteristics, or pronounced temporal
correlations.

To overcome these challenges, this study introduces a
Long Short-Term Memory (LSTM) network for detecting
spurious signals in PMS data. LSTM networks effectively
capture temporal dependencies across multiple time
scales, allowing more robust recognition of underlying
patterns compared with traditional statistical techniques.
The proposed approach demonstrates improved reliability
in spurious signal detection, thereby contributing to more
accurate fatigue evaluations within NuFMS.

2. Proposed Condition Monitoring System

2.1 Overall Framework

The overall framework of the proposed condition
monitoring system is illustrated in Fig. 1. In this study,
we propose a condition monitoring system capable of
fault signal detection. The system consists of four main
processes: (i) data acquisition and preprocessing, (ii)

interval segmentation and fault signal labeling, (iii)
model training, and (iv) evaluation and validation. In the
preprocessing stage, multi-sensor data are classified into
non-fault and fault signals, followed by standardization
procedures. The entire system employs an LSTM-based
classifier to perform fault signal detection.
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Fig. 1. Overview of the proposed condition monitoring
system

3. Methodology

3.1 Data Acquisition and preprocessing
3.1.1 Data Acquisition

In this study, 22 key variables from OPR-1000
pressurized water reactor (PWR) were selected as the
primary dataset. The raw data were obtained from the
Plant Information (PI) system over a period of
approximately 14 years, spanning from January 1, 2006,
to December 31, 2019. Among these, the records from
2006 to 2016 were utilized for model training, while the
records from 2017 to 2019 were employed for testing and
validation. Each variable reflects the operational states of
major systems and components in the nuclear
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Table 1. Variable Description

Variable Type Unit Measurement point Description
NP1 ~ NP4 Al % Power channels Nuclear Power
HLI ~HL3 Al °C Each loop Hot Leg Hot Leg Temperature
CL1~CL3 Al °C Each loop Cold Leg Cold Leg Temperature
Srg_Temp Al oC Pressurizer Pressurizer Surge Line Temperature
PZR W _Temp Al °C Pressurizer Pressurizer Water Temperature
PZR_S Temp Al °oC Pressurizer Pressurizer Steam Temperature
PZR Presl ~5 Al MPa Pressurizer Pressurizer Pressure
Sprl ~2 Temp Al °C Pressurizer spray Pressurizer spray Temperature
Chrg, Let_ Temp Al °C Chemical Volume Control System  Charging, Letdown Temperature

power plant, and the corresponding signal types and
measurement units are summarized in Table 1.

3.1.2 Data Characteristics
The measurements consist of both regularly recorded
values at midnight each day and additional event-based

entries triggered by changes in the monitored signals. As
a result, the intervals between records are irregular, and it
is uncommon for multiple variables to be recorded
simultaneously within the same time step. These
characteristics pose limitations in directly capturing the
temporal correlations among variables.

3.1.3 Data Interpolation

To address the aforementioned issues, missing values
in each variable were first imputed using linear
interpolation. Subsequently, the entire dataset was
resampled at one-minute intervals to normalize all
variables onto a common time axis. Through this process,
the irregular time series were transformed into uniform
sequences, thereby enabling inter-variable comparisons
and constructing input data suitable for LSTM-based
learning.

3.1.4 Signal Fault Modes

Spurious signals encountered in nuclear power plant
instrumentation are essentially similar to those observed
in general industrial systems. Signal faults can arise from
various causes, including: (i) hardware defects of the
measuring instruments, (ii) adverse environmental
conditions such as high temperature or radiation, (iii)
electronic or mechanical failures of transducers during
signal transmission, and (iv) malfunctions in
communication networks. These faults may manifest in
several characteristic forms, such as spikes, drifts,
saturation, and stuck signals, as illustrated in Fig. 2 [2].
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Fig. 2 Examples of Signal Fault Patterns by Measurement
Fault Categories

Similar fault patterns were observed in the dataset used in
this study. Specifically, impulse-type outliers, interval-
based stuck signals, drifts, and loss of redundancy
consistency among correlated sensors were identified,
which are consistent with typical signal faults in
industrial plants.

3.1.5 Dataset Partitioning

The dataset was divided by time period, with data from
20062016 used for training, and data from 2017-2019
employed for validation as an independent test set. Each
year contained major operational events, such as
unplanned trips and scheduled overhauls (OH). Based on
these events, the spurious signal detection model was
trained and evaluated in this study.

3.1.6 Data Normalization

To compensate for differences in the distribution of
variables and to prevent certain variables from
disproportionately influencing the model training, z-score
normalization was applied. This normalization ensured
that all input variables had zero mean and unit variance,
thereby improving training stability and convergence
speed. The normalization process is defined as:

ro__ x - H

x = (1)

a

where x denotes the original value, ¢ the mean, and o the
standard deviation of each variable.
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3.2 Segmentation and Fault signal Labeling
3.2.1 Data Segmentation

In this study, the time series data were divided into
smaller segments according to predefined criteria, and
each segment was assessed for the presence of fault
signals. To this end, two types of intervals were defined:

® Transient Interval: the period during which a
signal exceeds a predefined threshold and remains
unstable until it returns within the threshold range.

® Stable Interval: the period during which a signal
fluctuates within the threshold range without
exhibiting abrupt changes.

The thresholds were determined based on the
distribution of short-term variations (Ax) observed under
normal operating conditions for each variable.
Specifically, the short-term fluctuation range in normal
intervals was statistically quantified, and variable-
specific thresholds were assigned to reflect individual
characteristics of each signal.

In addition, the duration of each segment was limited
to a maximum of 120 minutes. This constraint was
imposed to ensure that when local fault signals (e.g.,
slowly drifting signals or anomalous values occurring
within an otherwise normal trend) were present, the
segmentation allowed such fault signals to be isolated
without misclassifying the surrounding normal data as
spurious signals. Consequently, even in cases where
normal and fault data coexisted within the same interval,
this approach enabled the effective extraction of local
fault signals while minimizing false detections.

3.2.2 Fault signal Labeling

Based on the segmented intervals, a first-stage
labeling process was performed using statistical
techniques. The standard deviation and z-score methods
were applied to each interval to detect values deviating
from the normal distribution range.

However, such statistical approaches exhibited
limitations, as they occasionally misclassified normal
fluctuations under steady-state operating conditions as
fault signals. In other words, physically valid variations
were sometimes falsely labeled as fault signals simply
because they exceeded mathematical thresholds.

To address this issue, a domain knowledge-based
review procedure involving researchers and plant
operators was incorporated following the initial labeling.
Each interval was manually examined and validated to
correct the false detections produced by the statistical
methods. Through this process, the final ground truth
dataset was constructed.

3.3 Model Training

In this study, an LSTM (Long Short-Term Memory)—
based classification model was designed for spurious
signal detection using time series data. The proposed
model adopts a many-to-one architecture, in which each
segmented sequence is provided as input, and the model
is trained to determine whether the given interval
contains fault data. The overall architecture of the
proposed LSTM model is illustrated in Fig. 3 [3].

LSTM networks have a structural advantage in
learning both long- and short-term dependencies in time
series. This enables the model not only to capture
instantaneous fault signals but also to reflect dynamic
patterns accumulated over a period of time.
Accordingly, the data of each interval are processed
sequentially, and the final hidden state is used to output
the classification result at the segment level.

The input data consist of 22 key variables that were
preprocessed and normalized onto a common one-
minute time axis, with each interval having a maximum
length of 120 minutes. During training, each interval
was transformed into a fixed-length sequence and fed
into the model. The labels were assigned according to
the presence or absence of fault signals in the
corresponding interval (0: normal, 1: fault).

In particular, to address the severe class imbalance in
the dataset, a higher weight was assigned to the fault
signal class during the loss function calculation, as
expressed in the following weighted cross-entropy
formulation:

Nneg

W= max(Npos, 1) &Y

N
1
L= N;(_(l =y log(1 —py) — yiwlog(py)) 3)

where Ny,  is the total number of normal (negative)
samples, N, is the total number of fault (positive)
samples, respectively. This weighting ensures that the
contribution of the minority (fault) class is amplified
relative to the majority (normal) class, thereby
encouraging the model to be more sensitive to fault
signal detection.



Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Many to One

5 1§

LSTM—» LSTM—>» LSTM

1

Label
ht
LSTM —> LSTM  f-------3 > LSTM —» LSTM --------1 > LSTM —> LSTM

R

Fig.3 LSTM many-to-one structure

1

Xt1

4. Results

In this study, the fault signal detection model was first
applied to the NP among the key variables. The NP signal
was chosen as the initial case study because it directly
represents the overall operating condition of the plant,
responds sensitively to system fault signals and sensor
malfunctions, and is one of the core input parameters used
in NuFMS fatigue evaluations.

4.1 Model performance Evaluation

The performance metrics of the LSTM-based fault
signal detection model for the NP signal are summarized
in Table 2. The overall accuracy reached 98.4%,
indicating high predictive performance. For the normal
class, the model achieved excellent results with a
precision of 1.00, recall of 0.98, and Fl-score of 0.99,
demonstrating stable and consistent classification. In
contrast, the performance for the fault class was more
limited. The precision was only 0.28, meaning that a
substantial number of normal signals were incorrectly
classified as fault signals, while the recall was 0.905,
showing that most actual fault signals were successfully
detected. Consequently, the Fl-score for the fault class
was 0.43.

The confusion matrix (Fig. 4) provides further insight
into the model’s predictions. As shown, a portion of
normal data was misclassified as fault signals (221 cases),
while the majority of fault signals were correctly
identified (86 cases). However, a small number of fault
signals were incorrectly classified as normal (9 cases).
This indicates that the model maintains high sensitivity in
fault signal detection but still suffers from false alarms.

4.2 Discussion

The low precision for the fault class can be explained
primarily by the severe class imbalance in the dataset—
only 95 fault signals (about 0.7%) were included out of
14,537 test samples—as well as the influence of

concurrent fault signals in other variables. In practice,
when fault signals occurred simultaneously in multiple
variables, the entire interval was labeled as fault. As a
result, the NP signal was also judged as anomalous, even
in cases where its own deviation was less distinct.

These results are summarized numerically in Table 2. The
evaluation of the NP signal demonstrates the potential
applicability of the proposed LSTM-based approach to
NuFMS signal validation. However, further studies
should extend this methodology to other key plant
variables to assess its robustness and generalizability.

Table 2. Performance metrics of the LSTM classifier for NP

Class Precision  Recall Fl-score Segment
Non-Fault  1.000 0.980  0.990 14,442
Fault 0.280 0.905  0.428 95
X Accuracy: 0.984
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Fig.4 Confusion matrix of fault signal detection results for NP

5. Conclusion

This study applied an LSTM-based fault signal
detection method to address the problem of spurious
signals that undermine the reliability of measurement
data in the NuFMS. To this end, major measurement
variables from OPR-1000 pressurized water reactor
(PWR) were collected, preprocessed, segmented, and
labeled to construct a training dataset, and the nuclear
power output signal (NP) was used for model training
and evaluation.

The experimental results showed that the proposed
LSTM model achieved a high recall of 0.905,
successfully detecting the majority of fault signals.
However, the precision was limited to 0.280, indicating
that many normal signals were misclassified as fault
signals. This low precision is interpreted as being caused
primarily by the severe class imbalance in the test
dataset, in which fault signals accounted for only about
0.7% of all samples, as well as the concurrent
occurrence of spurious signals in other variables, which
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caused NP intervals to be classified as fault even when
the NP signal itself did not show a distinct deviation.

Nevertheless, the study demonstrated the potential to
automate spurious signal detection, which has
traditionally relied on manual review. Since the NP
signal is a core parameter directly used in NuFMS
fatigue evaluations, the performance of the proposed
model provides an important case study for assessing the
feasibility of real-world application.

Future research directions include: (i) applying fault
signal data augmentation techniques to alleviate class
imbalance, (ii) developing a hybrid fault signal detection
framework that integrates statistical detection methods,
PCA-based dimensionality reduction, and probability
density function-based thresholding [4], (iii) extending
the validation to other key plant measurement variables
beyond NP. (iv) exploring the use of autoencoder-based
architectures, such as LSTM-AE, for not only detecting
spurious signals but also reconstructing and restoring
corrupted measurements.

Accordingly, the proposed approach is expected to
substantially improve the reliability of NuFMS fatigue
assessments by overcoming the inherent limitations of
manual inspection and providing a systematic,
automated validation process for PMS signals. In
particular, the establishment of an automated signal
validation framework ensures both consistency and
efficiency, which in the long term can contribute not
only to enhancing the accuracy of fatigue life
evaluations but also to strengthening overall plant safety
and facilitating regulatory compliance in nuclear power
plant operations.
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