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1. Introduction 

 
Modern nuclear power plants rely on extensive sensor 

networks for monitoring and control, with thousands of 

sensors distributed across multiple interconnected 

systems. These sensors are essential for maintaining safe 

operation, detecting anomalies, and supporting operator 

decision-making during both normal and abnormal 

conditions. However, catastrophic events such as 

earthquakes, flooding, or cyber attacks can disable large 

portions of the sensor network simultaneously, creating 

unprecedented challenges for maintaining situational 

awareness. 

Traditional sensor validation methods based on 

analytical redundancy or voting schemes assume that 

most sensors remain functional, making them ineffective 

when 30-50% of sensors fail simultaneously. 

Additionally, conventional neural network approaches 

that treat the sensor network as a fully-connected system 

become computationally prohibitive as the number of 

sensors increases, requiring quadratic growth in 

operations and memory. 

Graph Neural Networks, particularly Graph Attention 

Networks (GAT), offer a fundamentally different 

approach by exploiting the sparse physical connectivity 

of real systems. Rather than processing all possible 

sensor relationships, these networks focus on actual 

physical connections defined by piping and 

instrumentation diagrams, dramatically reducing 

computational requirements while improving restoration 

accuracy. This paper demonstrates how Temporal GAT 

resolves the efficiency-performance trade-off through 

intelligent graph-based processing. 

 

2. Methodology 

 

2.1 Temporal GAT architecture 

 

The Temporal GAT architecture implements three key 

innovations for robust sensor restoration. First, it 

employs a hierarchical graph structure that divides 

sensors into a main graph containing 628 critical sensors 

with high connectivity and importance, and a sub-graph 

with 1,918 sensors with fewer connectivity. The main 

graph receives intensive processing through 3-layer GAT 

with 4 attention heads, while the sub-graph uses efficient 

single-layer GAT with 2 heads. This ensures 

computational resources are focused on maintaining 

safety-critical measurements during resource-

constrained NPP abnormal conditions. 

Second, the model separates temporal and spatial 

processing to prevent cross-domain error propagation. 

Each sensor's 15-second time series is independently 

encoded using GRU layers to capture dynamic patterns: 

 

ℎ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝐺𝑅𝑈(𝑥𝑠𝑒𝑛𝑠𝑜𝑟) 

 

Following per-sensor temporal encoding, GAT layers 

aggregate information from physically connected 

neighbors. Attention weight 𝛼𝑖𝑗  is calculated as: 

 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖
||𝑊ℎ𝑗

])) 

 

And, weighted aggregation ℎ𝑠𝑝𝑎𝑡𝑖𝑎𝑙  is calculated as: 

 

ℎ𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = ∑ 𝛼𝑖𝑗𝑊ℎ𝑗
𝑗

 

 

Third, the attention mechanism automatically adapts 

to sensor failures by reducing weights for corrupted 

sensors while amplifying healthy neighbors. During 50% 

failure scenarios, failed sensors receive average weights 

of 0.082 while healthy neighbors increase to 0.743, 

enabling robust restoration without explicit failure 

detection. 

Critically, the Temporal GAT architecture is trained 

using a node masking strategy that randomly masks 20-

40% of sensors during each training iteration, forcing the 

network to restore complete sensor states from partial 

information. This training approach is uniquely suited to 

the sparse graph structure of Temporal GAT, as the 

localized attention mechanism can effectively 

redistribute information from remaining neighbors when 

nodes are masked. Unlike fully-connected networks that 

suffer global information loss when large portions of 

input are masked, the graph structure preserves local 

information pathways that enable restoration from 

surviving neighbors. This node masking strategy directly 

prepares the network for catastrophic sensor failure 

scenarios, teaching the attention mechanism to identify 

and suppress unreliable information while amplifying 

trusted sources. 

 

2.2 Computational Efficiency 
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Figure 1 BNPP system graph connectivity layout. Connection 

thickness reflects network connectivity strength. 

Figure 1 illustrates the sparse connectivity pattern of 

the BNPP sensor network, where nodes represent sensors 

and edges indicate physical connections derived from 

piping and instrumentation diagrams. The sparse graph 

structure with average degree 𝑘 = 11 out of 𝑁 = 2,546 

sensors provides dramatic computational advantages. 

While fully-connected architectures require 

𝑂(𝑁²) operations regardless of failure rate, Temporal 

GAT requires only 𝑂(𝑁 × 𝑘), with additional reduction 

as failed sensors are automatically excluded through 

attention weighting. This results in 673.8M FLOPs for 

fully-connected versus 330.1M for Temporal GAT, 

achieving 51% reduction while improving performance. 

 

3. Experimental Results 

 

3.1 Dataset and Setup 

 

Experiments utilize the BNPP full-scope simulator 

capturing 2,546 process variables across 53 abnormal 

scenarios including malfunctions in all primary, 

secondary and support systems. The dataset contains 762 

training samples and 91 test samples, each capturing 240 

seconds post-event at 1-second intervals. The physics-

based graph structure derived from P&ID analysis 

contains approximately 28,000 edges, representing 1.1% 

connectivity compared to full connectivity. 

 

3.2 Performance Analysis 

 

When the 628 high-connectivity hub sensors remain 

operational (catastrophic failures in peripheral sensors), 

the system maintains exceptional 94.2% accuracy 

despite 75% total sensor failures. Conversely, losing hub 

sensors causes severe performance degradation (31.4%) 

even with only 25% total failures, confirming that 

network connectivity structure is more critical than the 

absolute number of available sensors. The random failure 

scenario demonstrates Temporal GAT's robustness 

across diverse failure patterns, maintaining 82.1% 

accuracy while conventional AE drops to 42.6%. Mixed 

failure scenarios further validate that hub sensor 

preservation consistently outweighs peripheral sensor 

quantity in maintaining reconstruction quality. 

 
Table 1 Virtual sensor accuracy following sensor failure 

features 

Scenario 

Total 

sensor 

failure 

rate 

Hub 

Sensors 

(Main 

graph) 

Peripheral 

Sensors 

(Sub-

graph) 

Temporal 

GAT 

Conventio

nal AE 

Random 

failures 
40% - - 82.1% 42.6% 

Catastrophic 

failures in 

peripheral 

sensors 

75% 
100% 

OK 

0% 

OK 
91.8% 28.3% 

Catastrophic 

failures in 

hub sensors 

25% 
0% 

OK 

100% 

OK 
31.4% 35.7% 

Mixed 

failure 

scenario 1 

50% 
80% 

OK 

40% 

OK 
85.6% 39.8% 

Mixed 

failure 

scenario 2 

60% 
40% 

OK 

75% 

OK 
76.3% 33.1% 

 

Computational performance measurements confirm 

theoretical advantages translate to practical benefits. Hub 

sensor prioritization requires only 450MB memory 

compared to 2,620MB for fully-connected architectures, 

enabling embedded deployment. Inference completes in 

52ms versus 142ms, achieving 19.2Hz update rate 

suitable for real-time monitoring. Most importantly, 

prediction variance at 50% failure reduces by 34%, 

providing more reliable virtual sensor readings during 

abnormal situations. 

Performance under compound scenarios further 

demonstrates Temporal GAT superiority with hub sensor 

preservation. During steam generator tube rupture with 

30% sensor failures, the system achieves 88.6% accuracy 

compared to 45.2% for fully-connected approaches. For 

station blackout with 40% power-related failures, 

accuracy reaches 86.4% versus 51.3%. These 

exceptional results directly reflect the effectiveness of 

the node masking training strategy, which teaches the 

network to maintain reconstruction accuracy even when 

substantial portions of the sensor network become 

unavailable. The hierarchical hub-peripheral structure 

enables this training approach by preserving multiple 

independent pathways for information flow, whereas 

traditional architectures would suffer complete 

reconstruction failure under such aggressive masking 

during training. 

 

4. Discussion and Conclusion 

 

The superior performance of Temporal GAT despite 

using fewer computational resources stems from 

fundamental architectural advantages. By processing 

only physically connected sensors, the model eliminates 

noise from irrelevant correlations that plague fully-

connected approaches. The hierarchical structure ensures 

critical sensors receive adequate computational 

resources, while attention mechanisms automatically 

filter unreliable information. The node masking training 

strategy proves particularly effective because it exploits 
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the graph structure's inherent redundancy, where each 

sensor can be restored from multiple neighbor 

combinations, creating robust reconstruction pathways 

that remain viable even under extensive sensor losses. 

From an information-theoretic perspective, fully-

connected architectures suffer quadratic information loss 

with failure rate ρ, preserving only (1 − 𝜌)² of original 

information. At 50% failure, this means 75% information 

loss. In contrast, Temporal GAT preserves (1 − 𝜌𝑘/
𝑁)  ≈  99.8%  of information by limiting error 

propagation to local neighborhoods, explaining the 

maintained accuracy under catastrophic conditions. 

The demonstrated importance of main graph sensors has 

significant safety implications. Plant designs should 

prioritize physical hardening and diverse power supplies 

for these 628 critical sensors. Operating procedures can 

focus on preserving main graph integrity while accepting 

sub sensor degradation. Maintenance strategies should 

emphasize calibration and testing of safety-critical 

sensors to ensure their availability during critical events 
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