Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Graph Neural Network—Based Virtual Sensor Network
for Catastrophic Sensor Failures

Jeonghun Choi*, Seo Ryong Koo
Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Daejeon, 34057
“Corresponding author: jhchoi630@kaeri.re.kr

*Keywords : Nuclear power plant, Virtual sensor, Graph neural network

1. Introduction

Modern nuclear power plants rely on extensive sensor
networks for monitoring and control, with thousands of
sensors distributed across multiple interconnected
systems. These sensors are essential for maintaining safe
operation, detecting anomalies, and supporting operator
decision-making during both normal and abnormal
conditions. However, catastrophic events such as
earthquakes, flooding, or cyber attacks can disable large
portions of the sensor network simultaneously, creating
unprecedented challenges for maintaining situational
awareness.

Traditional sensor validation methods based on
analytical redundancy or voting schemes assume that
most sensors remain functional, making them ineffective
when 30-50% of sensors fail simultaneously.
Additionally, conventional neural network approaches
that treat the sensor network as a fully-connected system
become computationally prohibitive as the number of
sensors increases, requiring quadratic growth in
operations and memory.

Graph Neural Networks, particularly Graph Attention
Networks (GAT), offer a fundamentally different
approach by exploiting the sparse physical connectivity
of real systems. Rather than processing all possible
sensor relationships, these networks focus on actual
physical connections defined by piping and
instrumentation  diagrams, dramatically  reducing
computational requirements while improving restoration
accuracy. This paper demonstrates how Temporal GAT
resolves the efficiency-performance trade-off through
intelligent graph-based processing.

2. Methodology
2.1 Temporal GAT architecture

The Temporal GAT architecture implements three key
innovations for robust sensor restoration. First, it
employs a hierarchical graph structure that divides
sensors into a main graph containing 628 critical sensors
with high connectivity and importance, and a sub-graph
with 1,918 sensors with fewer connectivity. The main
graph receives intensive processing through 3-layer GAT
with 4 attention heads, while the sub-graph uses efficient
single-layer GAT with 2 heads. This ensures
computational resources are focused on maintaining

safety-critical ~ measurements  during
constrained NPP abnormal conditions.
Second, the model separates temporal and spatial
processing to prevent cross-domain error propagation.
Each sensor's 15-second time series is independently
encoded using GRU layers to capture dynamic patterns:

resource-

htemporal = GRU (Xsensor)

Following per-sensor temporal encoding, GAT layers
aggregate information from physically connected
neighbors. Attention weight «;; is calculated as:

a;; = softmax(LeakyReLU (a" (W, [ Wi, D)

And, weighted aggregation hgp,q;4, is calculated as:

hspatial = Z ) aijWhj
J

Third, the attention mechanism automatically adapts
to sensor failures by reducing weights for corrupted
sensors while amplifying healthy neighbors. During 50%
failure scenarios, failed sensors receive average weights
of 0.082 while healthy neighbors increase to 0.743,
enabling robust restoration without explicit failure
detection.

Critically, the Temporal GAT architecture is trained
using a node masking strategy that randomly masks 20-
40% of sensors during each training iteration, forcing the
network to restore complete sensor states from partial
information. This training approach is uniquely suited to
the sparse graph structure of Temporal GAT, as the
localized attention mechanism can effectively
redistribute information from remaining neighbors when
nodes are masked. Unlike fully-connected networks that
suffer global information loss when large portions of
input are masked, the graph structure preserves local
information pathways that enable restoration from
surviving neighbors. This node masking strategy directly
prepares the network for catastrophic sensor failure
scenarios, teaching the attention mechanism to identify
and suppress unreliable information while amplifying
trusted sources.

2.2 Computational Efficiency
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BNPP Nuclear Plant System Layout and Connectivity
Connection Thickness Reflects Network Connectivity Strength
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Figure 1 BNPP system graph connectivity layout. Connection
thickness reflects network connectivity strength.

Figure 1 illustrates the sparse connectivity pattern of
the BNPP sensor network, where nodes represent sensors
and edges indicate physical connections derived from
piping and instrumentation diagrams. The sparse graph
structure with average degree k = 11 out of N = 2,546
sensors provides dramatic computational advantages.
While fully-connected architectures require
O(N?) operations regardless of failure rate, Temporal
GAT requires only O(N X k), with additional reduction
as failed sensors are automatically excluded through
attention weighting. This results in 673.8M FLOPs for
fully-connected versus 330.1M for Temporal GAT,
achieving 51% reduction while improving performance.

3. Experimental Results
3.1 Dataset and Setup

Experiments utilize the BNPP full-scope simulator
capturing 2,546 process variables across 53 abnormal
scenarios including malfunctions in all primary,
secondary and support systems. The dataset contains 762
training samples and 91 test samples, each capturing 240
seconds post-event at 1-second intervals. The physics-
based graph structure derived from P&ID analysis
contains approximately 28,000 edges, representing 1.1%
connectivity compared to full connectivity.

3.2 Performance Analysis

When the 628 high-connectivity hub sensors remain
operational (catastrophic failures in peripheral sensors),
the system maintains exceptional 94.2% accuracy
despite 75% total sensor failures. Conversely, losing hub
sensors causes severe performance degradation (31.4%)
even with only 25% total failures, confirming that
network connectivity structure is more critical than the
absolute number of available sensors. The random failure
scenario demonstrates Temporal GAT's robustness
across diverse failure patterns, maintaining 82.1%
accuracy while conventional AE drops to 42.6%. Mixed

failure scenarios further validate that hub sensor
preservation consistently outweighs peripheral sensor
quantity in maintaining reconstruction quality.

Table 1 Virtual sensor accuracy following sensor failure
features

Total Hub Peripheral
Scenario sensor Sensors Sensors Temporal Conventio
failure (Main (Sub- GAT nal AE
rate graph) graph)
Random 40% - - 82.1% 42.6%
failures
Catastrophic
failures in o 100% 0% 0 0
peripheral 5% OK OK 91.8% 28.3%
Sensors
Catastrophic o o
failures in 25% ?)/Iz 1?)(:(/0 31.4% 35.7%
hub sensors
Mixed o o
failure 50% oo o 85.6% 39.8%
scenario 1
Mixed
X 40% 75%
failure 60% OK OK 76.3% 33.1%
scenario 2

Computational performance measurements confirm
theoretical advantages translate to practical benefits. Hub
sensor prioritization requires only 450MB memory
compared to 2,620MB for fully-connected architectures,
enabling embedded deployment. Inference completes in
52ms versus 142ms, achieving 19.2Hz update rate
suitable for real-time monitoring. Most importantly,
prediction variance at 50% failure reduces by 34%,
providing more reliable virtual sensor readings during
abnormal situations.

Performance under compound scenarios further
demonstrates Temporal GAT superiority with hub sensor
preservation. During steam generator tube rupture with
30% sensor failures, the system achieves 88.6% accuracy
compared to 45.2% for fully-connected approaches. For
station blackout with 40% power-related failures,
accuracy reaches 86.4% versus 51.3%. These
exceptional results directly reflect the effectiveness of
the node masking training strategy, which teaches the
network to maintain reconstruction accuracy even when
substantial portions of the sensor network become
unavailable. The hierarchical hub-peripheral structure
enables this training approach by preserving multiple
independent pathways for information flow, whereas
traditional architectures would suffer complete
reconstruction failure under such aggressive masking
during training.

4. Discussion and Conclusion

The superior performance of Temporal GAT despite
using fewer computational resources stems from
fundamental architectural advantages. By processing
only physically connected sensors, the model eliminates
noise from irrelevant correlations that plague fully-
connected approaches. The hierarchical structure ensures
critical sensors receive adequate computational
resources, while attention mechanisms automatically
filter unreliable information. The node masking training
strategy proves particularly effective because it exploits
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the graph structure's inherent redundancy, where each
sensor can be restored from multiple neighbor
combinations, creating robust reconstruction pathways
that remain viable even under extensive sensor losses.
From an information-theoretic perspective, fully-
connected architectures suffer quadratic information loss
with failure rate p, preserving only (1 — p)? of original
information. At 50% failure, this means 75% information
loss. In contrast, Temporal GAT preserves (1 — pk/
N) = 99.8% of information by limiting error
propagation to local neighborhoods, explaining the
maintained accuracy under catastrophic conditions.
The demonstrated importance of main graph sensors has
significant safety implications. Plant designs should
prioritize physical hardening and diverse power supplies
for these 628 critical sensors. Operating procedures can
focus on preserving main graph integrity while accepting
sub sensor degradation. Maintenance strategies should
emphasize calibration and testing of safety-critical
sensors to ensure their availability during critical events
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