
Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

GPU-based Parallelization of the CUPID code: Two Strategies and Preliminary Results

So Hyun Park*, Ik Kyu Park, Il Jin Kim
Korea Atomic Energy Research Institute, 1045 Daedeok-daro Yuseong-gu Daejeon Korea

*Corresponding author: bibirom10@kaeri.re.kr

*Keywords : CUPID code, GPU-based parallelization, Single-phase turbulence simulation, Computational
performance

1. Introduction

Since 2007, the Korea Atomic Energy Research
Institute (KAERI) has been developing the CUPID code,
a two-phase thermal-hydraulic analysis program, under
the national nuclear R&D program. The CUPID code is
a versatile solver capable of simulating not only reactor
component-scale systems but also computational fluid
dynamics (CFD)-scale phenomena. It has been
successfully applied to a wide range of problems, such
as subchannel-scale reactor core safety analyses and
CFD-scale boron mixing simulations within reactor
pressure vessels.[1]
Recently, KAERI launched the project to develop a

virtual reactor that achieves an experimental-level
reliability using high-fidelity simulations. By replacing
large-scale experimental campaigns with computational
simulations, this project aims to shorten the design
cycle and optimize safety margins. The rapid
advancement of GPU-based supercomputing
technologies has made such large-scale, high-resolution
simulations feasible, providing substantial
improvements in computational performance.
Furthermore, since the virtual reactor project adopts

the PRAGMA code — a GPU-optimized neutron
transport solver — it is essential to parallelize the
CUPID code on GPUs to enable efficient coupled
analyses between the thermal-hydraulic and neutron
transport simulations.[2]
In this study, we aim to parallelize the CUPID code

for two-phase thermal-hydraulic simulations on GPUs.
To achieve efficient and scalable parallelization, we
propose two complementary strategies.
Strategy 1. Maintain the existing CUPID data

structures and parallelize individual subroutines
Strategy 2: Redesign GPU-optimized data structures

and rebuild the solver form the scratch using CUDAC.

2. Strategy 1: Leveraging Existing Data Structures

This strategy parallelizes CUPID while retaining its
existing data structures, written primarily in Fortran.
The CUPID code adopts a Structure of Arrays (SoA)
layout, which is preserved here. GPU parallelization
uses a combination of directive-based kernels and
manual kernel implementations(Indirective kernel):
Directive kernels method uses the ‘!$curf kernel

do<<<*,*>>> directive, and the existing ‘Do loops’ are

automatically mapped to GPU blocks and threads by the
CUDA Fortran compiler. Indirective kernel method
explicitly implements custom CUDA kernels to control
thread/block mapping and memory access. This
parallelization approach offers several advantages: (1)
Ease of debugging, (2) Straightforward extension of
physical models, (3) Preservation of numerical schemes.
However, its disadvantages include limited optimization
and reduced code readability.

2.1 Pressure Solver Parallelization

We focused on parallelizing the pressure solver,
which accounts for the highest computational cost.
CUPID code employs the Incomplete LU-
preconditioned Bi-Conjugate Gradient Stabilized (iLU-
BiCGStab) algorithm. While vector-vector and vector-
matrix operations were parallelized using directive
kernels, matrix-vector multiplications were explicitly
rewritten with manual kernels to maximize performance.
To further accelerate the iLU preconditioner, we

introduces the red-black coloring technique, which
decouples data dependencies between neighboring cells.
This significantly enhances GPU parallel efficiency.
Benchmarking against a single-core CPU shows a

20x speedup for a mesh with approximately 500,000
cells.

2.2 Governing Equations Parallelization

For most subroutines that compute governing
equations, we applied directive kernel method. And it
requires CPU-GPU memory transfers.
Although frequent memory copies affect performance,

this approach maintains code robustness and
compatibility with existing CUPID code.

2.3 Steamtable Parallelization

The steamtable module, responsible for evaluating
thermo-physical properties of water, pure steam, and
non-condensable gases, plays a critical role in two-
phase simulations. Originally, this module performs
property evaluation through a single cell-loop with
extensive conditional branching(IF-ELSEIF-ELSE),
which is inefficient on GPUs. We refactored the
steamtable algorithm by separating liquid, steam, NCGs
into independent kernels.

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

2.4 Code Verification

Such GPU-based parallelized pilot code is verified on
a 3D k-e turbulence benchmark problems. And it
demonstrated excellent agreement with CPU solutions,
confirming the correctness of parallel implementation.

Fig. 1. Comparison of axial velocity with CPU-calculated
results

3. Strategy 2: Building GPU-optimized Data
Structures

The second strategy builds GPU-optimized data
structures and redesigns CUPID from scratch. Unlike
Strategy 1, this approach implements manual kernels
exclusively.
While the target structure is SoA, the current

development stage temporarily uses an Array of
Structures (AoS) layout due to code refactoring
priorities. The advantages of this strategy include: (1)
Reduced memory footprint and GPU-friendly memory
access patterns, (2) Extensive use of CUDA
libraries(e.g., cuSPARSE, cuBLAS), (3) Greater
performance optimization potential. However, since this
approach requires a deep understanding on CUPID code
and difficult debugging resulting in reconstruction from
scratch.

3.1 CUDA Library Utilization for Pressure Solver

We adopted NVIDIA’s libraries to parallelize the
iLU-BiCGStab solver: Sparse-dense vector operations
and sparse matrix-vector multiplications are
implemented using cuSPARSE. Vector inner products
and vector-vector operations are implemented using
cuBLAS. This library-based parallelization achieves
high computational efficiency on modern NVIDIA
GPUs.

4. Conclusions

We presented two strategies for GPU-based
parallelization of the CUPID code to enable high-

fidelity two-phase thermal-hydraulic simulations and
efficient coupling with the PRAGMA code. Preliminary
results lay the groundwork for a virtual reactor
framework capable of achieving experimental-level
reliability through fully GPU-accelerated simulations.

ACKNOWLEDGEMENT

This research was supported by the National
Research Council of Science & Technology(NST) grant
by the Korea government (MSIT) (No. GTL24031-100)
and the Korea Atomic Energy Research Institute
(KAERI) (524520-25).

REFERENCES

[1] Cho, Yun Je, and Han Young Yoon, Numerical Analysis of
the ROCOM Boron Dilution Benchmark Experiment Using
the CUPID Code, Nuclear Engineering and Design 341, 2019.

[2] N. Choi and H. G. Joo, “Domain decomposition for GPU-
Based continuous energy Monte Carlo power reactor
calculation,” Nuclear Engineering and Technology, vol. 52, pp.
2667-2677, 2020.

