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1. Introduction

Trends analysis of human error events in nuclear
power plants serves as an important indicator for
understanding operation performance. Traditional tools
such as Pareto charts and control charts are useful for
identifying major weak points by focusing on the
frequency of recurring causes. However, these methods
fail to capture the relationships among different
contributing factors. To overcome this limitation, we
introduce a network analysis approach that structurally
represents events. When modeled as a graph, events
consist of nodes and edges, where nodes represent causes
or components and edges denote the relationships
between these factors. By assigning weights to this
network, the analysis goes beyond simple frequency
counts to identify critical factors and their
interconnections.

This study therefore propose a weighted network
graph approach for trend analysis of human error events
in nuclear power plants.

2. Methods and Results
2.1 Network Graph of Nuclear Power Plants Events

Events in nuclear power plants rarely result from a
sing factor; rather, multiple causes, systems, and
components are typically intertwined. Traditional tools
such as Pareto charts and frequency analysis can
enumerate such factor independently but are limited in
capturing the multi-dimensional interaction structure of
events.

Fig. 1. Conceptual Network Graph of Nuclear Power plant
Events

To reflect these complex characteristics, we employ

the network graph (fig. 1) as an analytical tool. A
network graph is mathematically defined as

G=(V.E)

Where V' denotes the set of nodes representing the
essential components of events, and £ denotes the set of
edges indicating the co-occurrence of two nodes within
the same event. In other words, a single event generates
multiple nodes simultaneously, and the entire dataset can
be represented as a collection of such co-occurrence
relationships.

However, constructing the network solely on the
existence of nodes and edges tends to disproportionately
highlight only the most frequently occurring factors. This
neglects the importance level and the severity of
outcomes, leading to potential distortion in analysis.
Therefore, it is necessary to assign weights to both nodes
and edges that reflect the event importance and outcome
severity.

2.2 Node Weight

To assign node weights, the initial approach was to
simply aggregate the importance scores of events
associated with each node. Let /; denote the set of events
linked to node iii. The initial node weight was defined as:

wi = Z k € 1,S(k)

where S(k) represents the importance score of event k.
However, this formulation does not sufficiently account
for the multifaceted outcomes of events. For example,
two Level 1 events may differ significantly: one might
cause an unplanned shutdown, while another may only
result in a power derate or regulatory reporting
requirement. Thus, a simple summation of importance
scores fails to capture the true impact of each event.

To address this limitation, an event weight was
introduced, incorporating both importance and outcome
effects:

Weuent =SXFoulmme

Here, SSS denotes the importance score of the event,
while Foucome 18 a correction factor reflecting the
consequences of the event. In cases where multiple
outcomes occur simultaneously, normalization or a
maximum-value adjustment is applied to prevent
excessive inflation of weights.

Accordingly, the final node weight is defined as:



wnode j — Zk EIiWevent (k)

This formulation ensures that a node’s weight reflects not
only the frequency of its occurrence but also the severity
and significance of the events it is involved in. Therefore,
nodes representing root causes, systems, or equipment
are evaluated in terms of both event frequency and
consequence severity, providing a more accurate
representation in network-based trend analysis.

2.3 Edge Weight

While node weights reflect the importance of
individual events, edges represent the relationships
between nodes within an event. A straightforward
approach would be to assign a binary value: if two nodes
co-occur in the same event, the edge weight is 1;
otherwise, it is 0. However, such a binary representation
fails to capture the relative importance of the edge.

To address this limitation, this study incorporates the
event weight (We.en) into edge construction. Let [j
denote the set of events in which both node i and node j
appear simultaneously. The edge weight is then defined
as:

wedgej — Z k €1; Weane (K)

This formulation not only reflects how frequently two
nodes co-occur but also accounts for the importance and
severity of the events they share. As a result, edges
connecting nodes that co-occur in high-risk events are
assigned greater weights compared to those appearing
only in minor events. This allows the network analysis to
highlight high-risk associations, moving beyond simple
co-occurrence frequency to reveal more meaningful
structural insights.

2.4 Characteristics of Weighted Networks

The application of node and edge weights
differentiates the proposed method from traditional
frequency-based analyses. Node weights represent the
extent to which specific causes, systems, or equipment
are involved in high-impact events, while edge weights
capture the strength of co-occurrence relationships in
severe events.

As a result, weighted networks exhibit structural
properties that simple co-occurrence graphs cannot
reveal. For example, two causes may appear with the
same frequency, but if one is repeatedly associated with
unplanned shutdowns or regulatory reportable events, it
will attain higher centrality. This distinction highlights
not just how often factors occur, but how critical their
interactions are in shaping event outcomes.

Key characteristics of weighted networks include:

(DIntegration of both event frequency and severity of
consequences.

@Emphasis on high-risk associations among causes,
systems, and equipment.

(®Enhanced applicability of advanced metrics (e.g.,
centrality, clustering) to identify hidden vulnerabilities.

Thus, weighted networks provide a more risk-
sensitive and structurally informed framework for trend
analysis of human error events in nuclear power plants.

3. Conclusions

The network model proposed in this study assigns
weights to both nodes and edges, allowing the analysis to
consider not only how frequently factors occur, but also
how strongly they are involved in severe events and how
intensively they are interconnected in high-risk cases.
Node weights reflect the severity and importance of
event outcomes, highlighting the criticality of specific
causes, systems, or equipment. Edge weights represent
the degree to which factors co-occur within events,
combined with the event weight. This approach enables
the identification of high-risk associations, going beyond
simple co-occurrence frequency.

REFERENCES

[1] Jeongjin Park, A study on the Trend of Human Performance
related events at nuclear power plant in 2019, Journal of the
Korean Institute of Industrial Engineers, Vol.47, No3, p315,
2021

[2] INPO, Guidelines for performance at Nuclear Power
Station , INPO 05-005

[3] INPO, Performance Assessment and Trending — General
Practices for Analyzing and Understanding Performance,
INPO 07-007



