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1. Introduction 

 
Trends analysis of human error events in nuclear 

power plants serves as an important indicator for 
understanding operation performance. Traditional tools 
such as Pareto charts and control charts are useful for 
identifying major weak points by focusing on the 
frequency of recurring causes. However, these methods 
fail to capture the relationships  among different 
contributing factors. To overcome this limitation, we 
introduce a network analysis approach that structurally 
represents events. When modeled as a graph, events 
consist of nodes and edges, where nodes represent causes 
or components and edges denote the relationships 
between these factors. By assigning weights to this 
network, the analysis goes beyond simple frequency 
counts to identify critical factors and their 
interconnections. 

This study therefore propose a weighted network 
graph approach for trend analysis of human error events 
in nuclear power plants.  

 
2. Methods and Results 

 
2.1 Network Graph of Nuclear Power Plants Events 

 
Events in nuclear power plants rarely result from a 

sing factor; rather, multiple causes, systems, and 
components are typically intertwined. Traditional tools 
such as Pareto charts and frequency analysis can 
enumerate such factor independently but are limited in 
capturing the multi-dimensional interaction structure of 
events. 
 

 
 
Fig. 1. Conceptual Network Graph of Nuclear Power plant 
Events 

 
To reflect these complex characteristics, we employ 

the network graph (fig. 1) as an analytical tool. A 
network graph is mathematically defined as  

 
G=(V,E) 

 

Where V denotes the set of nodes representing the 
essential components of events, and E denotes the set of 
edges indicating the co-occurrence of two nodes within 
the same event. In other words, a single event generates 
multiple nodes simultaneously, and the entire dataset can 
be represented as a collection of such co-occurrence 
relationships. 

However, constructing the network solely on the 
existence of nodes and edges tends to disproportionately 
highlight only the most frequently occurring factors. This 
neglects the importance level and the severity of 
outcomes, leading to potential distortion in analysis. 
Therefore, it is necessary to assign weights to both nodes 
and edges that reflect the event importance and outcome 
severity. 

 
2.2 Node Weight 
 
To assign node weights, the initial approach was to 
simply aggregate the importance scores of events 
associated with each node. Let Ii denote the set of events 
linked to node iii. The initial node weight was defined as: 
  =    ∈ () 
 
where S(k) represents the importance score of event k. 
However, this formulation does not sufficiently account 
for the multifaceted outcomes of events. For example, 
two Level 1 events may differ significantly: one might 
cause an unplanned shutdown, while another may only 
result in a power derate or regulatory reporting 
requirement. Thus, a simple summation of importance 
scores fails to capture the true impact of each event. 
 
To address this limitation, an event weight was 
introduced, incorporating both importance and outcome 
effects: 
  =  ×    
 
Here, SSS denotes the importance score of the event, 
while Foutcome  is a correction factor reflecting the 
consequences of the event. In cases where multiple 
outcomes occur simultaneously, normalization or a 
maximum-value adjustment is applied to prevent 
excessive inflation of weights. 
 
Accordingly, the final node weight is defined as: 



 

  =   ∈  () 
 
This formulation ensures that a node’s weight reflects not 
only the frequency of its occurrence but also the severity 
and significance of the events it is involved in. Therefore, 
nodes representing root causes, systems, or equipment 
are evaluated in terms of both event frequency and 
consequence severity, providing a more accurate 
representation in network-based trend analysis. 
 
2.3 Edge Weight 

 
While node weights reflect the importance of 

individual events, edges represent the relationships 
between nodes within an event. A straightforward 
approach would be to assign a binary value: if two nodes 
co-occur in the same event, the edge weight is 1; 
otherwise, it is 0. However, such a binary representation 
fails to capture the relative importance of the edge. 

To address this limitation, this study incorporates the 
event weight (Wevent) into edge construction. Let Iij 
denote the set of events in which both node i and node j 
appear simultaneously. The edge weight is then defined 
as: 

   =   ∈   () 
 
This formulation not only reflects how frequently two 

nodes co-occur but also accounts for the importance and 
severity of the events they share. As a result, edges 
connecting nodes that co-occur in high-risk events are 
assigned greater weights compared to those appearing 
only in minor events. This allows the network analysis to 
highlight high-risk associations, moving beyond simple 
co-occurrence frequency to reveal more meaningful 
structural insights. 
 
2.4 Characteristics of Weighted Networks 
 

The application of node and edge weights 
differentiates the proposed method from traditional 
frequency-based analyses. Node weights represent the 
extent to which specific causes, systems, or equipment 
are involved in high-impact events, while edge weights 
capture the strength of co-occurrence relationships in 
severe events. 

As a result, weighted networks exhibit structural 
properties that simple co-occurrence graphs cannot 
reveal. For example, two causes may appear with the 
same frequency, but if one is repeatedly associated with 
unplanned shutdowns or regulatory reportable events, it 
will attain higher centrality. This distinction highlights 
not just how often factors occur, but how critical their 
interactions are in shaping event outcomes. 

Key characteristics of weighted networks include: 
 
○1 Integration of both event frequency and severity of 

consequences. 

 
○2 Emphasis on high-risk associations among causes, 

systems, and equipment. 
 
○3 Enhanced applicability of advanced metrics (e.g., 

centrality, clustering) to identify hidden vulnerabilities. 
 
Thus, weighted networks provide a more risk-

sensitive and structurally informed framework for trend 
analysis of human error events in nuclear power plants. 

 
 

3. Conclusions 
 

The network model proposed in this study assigns 
weights to both nodes and edges, allowing the analysis to 
consider not only how frequently factors occur, but also 
how strongly they are involved in severe events and how 
intensively they are interconnected in high-risk cases. 
Node weights reflect the severity and importance of 
event outcomes, highlighting the criticality of specific 
causes, systems, or equipment. Edge weights represent 
the degree to which factors co-occur within events, 
combined with the event weight. This approach enables 
the identification of high-risk associations, going beyond 
simple co-occurrence frequency. 
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