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1. Introduction 

 
Instrumentation and control (I&C) systems in nuclear 

power plants are divided into safety and non-safety 
categories [1]. While research has traditionally focused 
on safety systems, non-safety controls can also play a 
decisive role in initiating reactor trips. Stable operation 
under disturbances such as load rejection, turbine trip, or 
auxiliary system faults depends on the proper 
functioning of these non-safety controls. Their 
malfunction may inadvertently trigger reactor protection 
actions. 

The Steam Bypass Control System (SBCS) is a 
representative case. It regulates main steam pressure 
during normal operation and, in transients, controls 
Turbine Bypass Valves (TBVs) to dump steam into the 
condenser, thereby maintaining the thermal stability of 
the steam generators and the Nuclear Steam Supply 
System (NSSS). Failure of the SBCS may cause 
excessive steam pressure rise, MSSV actuation, or 
reactor trip conditions [2]. 

Recent concerns over cyber security highlight the risk 
of intentional manipulation of control logic or signals in 
non-safety systems [3]. Existing monitoring schemes 
mainly hardware checks or single-device anomaly 
detection are insufficient to discriminate between 
equipment faults and cyberattacks. To address this gap, 
this study proposes a logic-based anomaly detector for 
SBCS demand signals, combined with controller 
diagnostic signals within a Dynamic Bayesian Network 
(DBN) framework. The DBN provides real-time 
posterior probabilities of controller states (Normal, Fault, 
and Attack). This work aims to present a high-reliability 
concept for real-time anomaly detection, supporting 
enhanced cyber security of nuclear I&C systems. 

 
2. Target System and Functions 

 
The Steam Bypass Control System (SBCS) is a 

subsystem of the NSSS Process Control System (NPCS) 
in the APR-1400, classified as a non-safety I&C system. 
Its primary role is to regulate main steam pressure and 
thereby maintain the energy balance of the NSSS. The 
system controls Turbine Bypass Valves (TBVs), 
ensuring stable steam pressure during normal operation 

and providing critical functionality for rapid load change 
management during transients. 

 
This study focuses on four control functions of the 

SBCS that have direct potential to induce reactor trips: 
 

• TBV Quick-Open DEMAND 
• Reactor Power Cutback (RPC) DEMAND 
• Automatic Motion Inhibit (AMI) DEMAND 
• Automatic Withdrawal Prohibit (AWP) DEMAND 

 
The TBV Quick-Open DEMAND is activated during 

sudden load rejection or turbine trip events, commanding 
multiple TBVs to open rapidly and prevent excessive 
steam pressure rise. Its failure or delay may result in 
MSSV actuation or reactor trip by the protection system. 
The RPC DEMAND reduces reactor power swiftly 
through the Reactor Power Cutback System (RPCS) 
when load reduction exceeds TBV bypass capacity; its 
malfunction increases the likelihood of reactor protection 
actuation. The AMI DEMAND inhibits automatic 
control rod motion under certain operating conditions, 
preventing unnecessary rod movement. Anomalies in 
this signal may cause reactor power fluctuations and 
spurious trips. The AWP DEMAND blocks automatic 
control rod withdrawal during transients, thereby 
avoiding inappropriate positive reactivity insertion. Its 
failure may lead to rapid power escalation and 
subsequent protection system intervention. 

All four functions are tightly linked to reactor trip 
prevention. Therefore, ensuring integrity and reliability 
not only at the system level but also at the functional 
signal level is essential. This study proposes a 
methodology to detect inconsistencies between each 
DEMAND signal and its intended reference logic, 
classifying the cause as either a controller fault or a cyber 
threat. 

 
3. Process Logic-based Anomaly Detection 

 
The first key element proposed in this study is the 

Logic-based Anomaly Monitor (LAM). The LAM 
replicates the design logic of the control system in an 
independent, isolated platform. It receives the same input 
signals as the actual controller and executes the logic in 
parallel. By comparing the outputs of the reference logic 
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with those of the controller, the LAM detects 
inconsistencies that indicate abnormal behavior. 

 
Unlike conventional signal-level monitoring, this 

approach treats the full control logic as a white-box 
reference model, thereby enabling detection at the 
functional level. For instance, in the SBCS, a TBV 
Quick-Open DEMAND signal must be generated when 
specific conditions (e.g., rapid steam pressure rise, 
turbine trip) are met. The LAM checks whether the 
outputs of the reference logic and the actual controller 
align under identical inputs. Any discrepancy is flagged 
immediately as an anomaly. 

Such inconsistencies may arise from different root 
causes, including: 

 
• Hardware faults: unresponsive I/O modules, CPU 

processing delays, communication link failures. 
• Software faults: logic mismatches between 

redundant controllers, timing errors, internal 
variable miscalculations. 

• Cyber threats: forced insertion or blocking of 
DEMAND signals, sequence distortion, timestamp 
manipulation. 

 
The LAM itself does not attempt to classify whether 

an anomaly originates from a fault or a cyberattack. 
Instead, it generates a residual signal, representing the 
degree of mismatch between reference logic and 
controller outputs. This residual, together with additional 
diagnostic signals, serves as a key input to the subsequent 
DBN-based state estimation module, which categorizes 
the controller state into Normal, Fault, or Attack. 

Formally, the residual can be expressed as: 
 
𝑟ሺ𝑡ሻ ൌ 𝑓൫𝑦௥௘௙ሺ𝑡ሻ,𝑦௖௧௥௟ሺ𝑡ሻ൯   (1) 
 
Where, 𝑦௥௘௙ሺ𝑡ሻ: output of the reference logic (LAM), 

𝑦௖௧௥௟ሺ𝑡ሻ: output of the actual controller, 𝑓ሺ∙ሻ: comparison 
function depending on the signal type. 

 
Specifically, for Boolean signals, residuals are defined 

as: 

𝑟ሺ𝑡ሻ ൌ ൜
0,𝑦௥௘௙ሺ𝑡ሻ ൌ 𝑦௖௧௥௟ሺ𝑡ሻ
1,𝑦௥௘௙ሺ𝑡ሻ ് 𝑦௖௧௥௟ሺ𝑡ሻ

   (2) 

 
and for REAL/SINT signals, residuals are defined as: 
 
𝑟ሺ𝑡ሻ ൌ 𝑦௥௘௙ሺ𝑡ሻ െ 𝑦௖௧௥௟ሺ𝑡ሻ   (3) 
 
In this study, the residual definitions were limited to 

Boolean, REAL, and SINT signals, as these represent the 
actual data types generated by the target controller and 
accessible through the engineering workstation. Other 
data types (e.g., INT, DINT, DOUBLE) are not used in 
the system, and thus were not considered in this 
conceptual framework. 

The anomaly decision is determined by applying a 
threshold 𝜃: 

 

|𝑟ሺ𝑡ሻ| ൐ 𝜃 → Anomaly Detected   (4) 
 
For Boolean signals, a fixed threshold (𝜃 = 0.5) 

ensures immediate detection of mismatches, whereas for 
REAL/SINT signals, the threshold is set considering 
sensor precision and allowable tolerance. 

Figure 1 illustrates the block diagram of the LAM 
concept. The controller inputs are simultaneously 
provided to both the reference logic and the actual 
controller. Their outputs are compared to produce a 
residual signal, which is then supplied to the DBN-based 
state estimator along with other diagnostic information. 

 

 
Fig. 1. Block diagram of LAM and DBN for Real-time 

controller threat state estimation  
 

4. DBN-based Real-time Threat State Estimation 
 
In this study, a DBN was employed to enable real-time 

estimation of controller states. A DBN provides a 
probabilistic framework to model the temporal 
relationship between hidden states and observable 
evidence, making it particularly suitable for signal 
interpretation under various sources of uncertainty [4]. 

In our formulation, the hidden state variable is defined 
with three categories: Normal, Fault, and Attack. At each 
time step, the DBN computes the posterior probability of 
the controller’s state based on the set of observations. 

 
4.1 Modeling Environment and Tools 

 
The DBN model was implemented using the 

GeNIe/SMILE platform. GeNIe supports both visual 
model construction and probabilistic inference, enabling 
intuitive design even for complex I&C systems with a 
large number of observation variables [5]. In this study, 
the DBN input nodes were configured to include multiple 
categories of evidence related to the SBCS controller: 
internal diagnostic signals, sensor quality indicators, and 
anomaly residuals generated by the LAM. 

 
 
 



Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 30-31, 2025 

 
 
4.2 Observation Nodes 

 
The observation nodes of the DBN can be classified 

into three major groups:  
Logic-based anomaly residuals: Discrepancies 

between the reference logic output and the actual 
controller output for each DEMAND function. 

Internal diagnostic signals: Indicators such as CPU 
utilization, logic mismatch between redundant 
controllers, communication port status, memory integrity, 
and operator authority transitions. 

Sensor Quality (SQ) signals: Quality states of key 
instrumentation, including pressurizer pressure, steam 
generator flow, main steam pressure, and turbine bypass 
valve positions. 

 
4.3 Hidden States and State Transition Modeling 

 
In the proposed DBN, the hidden state variable 

represents the operational status of the SBCS 
controller, which can take one of three mutually 
exclusive categories: Normal, Fault, or Attack. These 
states are not directly observable, but are inferred from 
the probabilistic relationship between the hidden states 
and the observation nodes introduced in Section 4.2. 

 
The temporal dynamics of the hidden state are 

captured by the state transition probability matrix. In 
general, the model assumes high self-persistence (e.g., 

Normal → Normal with high probability), while 

transitions to abnormal conditions (Normal → Fault or 

Normal → Attack) are modeled with lower 
probabilities. Similarly, recovery transitions (e.g., 

Fault → Normal) are allowed but occur with relatively 
low likelihood, reflecting realistic controller behavior. 
Transitions between Fault and Attack are also possible 
but are defined separately, since hardware/software 
faults and intentional cyber intrusions typically exhibit 
distinct temporal signatures. 

 
The observation model links the hidden state to the 

three groups of observation nodes: 
 

• Logic-based anomaly residuals are strongly 
indicative of deviations from intended control 
logic, and their abnormal patterns increase the 
likelihood of either Fault or Cyberattack. 

• Internal diagnostic signals primarily reflect 
hardware/software malfunctions, and thus 
contribute more strongly to distinguishing Fault 
from Cyberattack. 

• Sensor Quality (SQ) signals provide contextual 
evidence that helps confirm whether anomalies 
are consistent with physical process faults or 
artificially injected disturbances. 

 

The posterior probability of each hidden state at 
time t is computed using standard DBN inference 
algorithms as: 

 
𝑃ሺ𝑋௧|𝑂ଵ:௧ሻ ∝

𝑃ሺ𝑂௧ห𝑋௧ሻ∑ 𝑃ሺ𝑋௧|𝑋௧ିଵሻ𝑃ሺ௑೟షభ 𝑋௧ିଵ|𝑂ଵ:௧ିଵሻ (5) 
 
where 𝑋௧  is the hidden state (Normal, Fault, and 

Attack), and 𝑂௧ represents the set of observation nodes 
at time t. This recursive formulation enables real-time 
estimation of controller status, continuously updating 
the belief state as new evidence becomes available. 

 

 
Fig. 2. Conceptual DBN state estimation model for SBCS 

threat detection 
 

5. Conclusions 
 
This study proposes a conceptual framework for 

detecting controller faults and cyber threats in the Steam 
Bypass Control System (SBCS) of APR-1400. By 
combining a LAM with a DBN, the approach enables 
integrity verification of critical DEMAND signals and 
probabilistic classification of controller states into 
normal, fault, or attack. 

 
The proposed method extends beyond simple signal 

monitoring by leveraging process logic for anomaly 
detection and probabilistic reasoning for real-time state 
estimation, thereby offering potential support for 
operator decision-making. This study conceptually 
proposes a real-time threat detection framework 
combining LAM and DBN. Future work will enhance 
practicality through data-driven learning and validation. 
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