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1. Introduction

Instrumentation and control (I&C) systems in nuclear
power plants are divided into safety and non-safety
categories [1]. While research has traditionally focused
on safety systems, non-safety controls can also play a
decisive role in initiating reactor trips. Stable operation
under disturbances such as load rejection, turbine trip, or
auxiliary system faults depends on the proper
functioning of these non-safety controls. Their
malfunction may inadvertently trigger reactor protection
actions.

The Steam Bypass Control System (SBCS) is a
representative case. It regulates main steam pressure
during normal operation and, in transients, controls
Turbine Bypass Valves (TBVs) to dump steam into the
condenser, thereby maintaining the thermal stability of
the steam generators and the Nuclear Steam Supply
System (NSSS). Failure of the SBCS may cause
excessive steam pressure rise, MSSV actuation, or
reactor trip conditions [2].

Recent concerns over cyber security highlight the risk
of intentional manipulation of control logic or signals in
non-safety systems [3]. Existing monitoring schemes
mainly hardware checks or single-device anomaly
detection are insufficient to discriminate between
equipment faults and cyberattacks. To address this gap,
this study proposes a logic-based anomaly detector for
SBCS demand signals, combined with controller
diagnostic signals within a Dynamic Bayesian Network
(DBN) framework. The DBN provides real-time
posterior probabilities of controller states (Normal, Fault,
and Attack). This work aims to present a high-reliability
concept for real-time anomaly detection, supporting
enhanced cyber security of nuclear I&C systems.

2. Target System and Functions

The Steam Bypass Control System (SBCS) is a
subsystem of the NSSS Process Control System (NPCS)
in the APR-1400, classified as a non-safety I&C system.
Its primary role is to regulate main steam pressure and
thereby maintain the energy balance of the NSSS. The
system controls Turbine Bypass Valves (TBVs),
ensuring stable steam pressure during normal operation

and providing critical functionality for rapid load change
management during transients.

This study focuses on four control functions of the
SBCS that have direct potential to induce reactor trips:

*  TBV Quick-Open DEMAND

*  Reactor Power Cutback (RPC) DEMAND

*  Automatic Motion Inhibit (AMI) DEMAND

e Automatic Withdrawal Prohibit (AWP) DEMAND

The TBV Quick-Open DEMAND is activated during
sudden load rejection or turbine trip events, commanding
multiple TBVs to open rapidly and prevent excessive
steam pressure rise. Its failure or delay may result in
MSSYV actuation or reactor trip by the protection system.
The RPC DEMAND reduces reactor power swiftly
through the Reactor Power Cutback System (RPCS)
when load reduction exceeds TBV bypass capacity; its
malfunction increases the likelihood of reactor protection
actuation. The AMI DEMAND inhibits automatic
control rod motion under certain operating conditions,
preventing unnecessary rod movement. Anomalies in
this signal may cause reactor power fluctuations and
spurious trips. The AWP DEMAND blocks automatic
control rod withdrawal during transients, thereby
avoiding inappropriate positive reactivity insertion. Its
failure may lead to rapid power escalation and
subsequent protection system intervention.

All four functions are tightly linked to reactor trip
prevention. Therefore, ensuring integrity and reliability
not only at the system level but also at the functional
signal level is essential. This study proposes a
methodology to detect inconsistencies between each
DEMAND signal and its intended reference logic,
classifying the cause as either a controller fault or a cyber
threat.

3. Process Logic-based Anomaly Detection

The first key element proposed in this study is the
Logic-based Anomaly Monitor (LAM). The LAM
replicates the design logic of the control system in an
independent, isolated platform. It receives the same input
signals as the actual controller and executes the logic in
parallel. By comparing the outputs of the reference logic
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with those of the controller, the LAM detects
inconsistencies that indicate abnormal behavior.

Unlike conventional signal-level monitoring, this
approach treats the full control logic as a white-box
reference model, thereby enabling detection at the
functional level. For instance, in the SBCS, a TBV
Quick-Open DEMAND signal must be generated when
specific conditions (e.g., rapid steam pressure rise,
turbine trip) are met. The LAM checks whether the
outputs of the reference logic and the actual controller
align under identical inputs. Any discrepancy is flagged
immediately as an anomaly.

Such inconsistencies may arise from different root
causes, including:

*  Hardware faults: unresponsive I/O modules, CPU
processing delays, communication link failures.

* Software faults: logic mismatches between
redundant controllers, timing errors, internal
variable miscalculations.

e Cyber threats: forced insertion or blocking of
DEMAND signals, sequence distortion, timestamp
manipulation.

The LAM itself does not attempt to classify whether
an anomaly originates from a fault or a cyberattack.
Instead, it generates a residual signal, representing the
degree of mismatch between reference logic and
controller outputs. This residual, together with additional
diagnostic signals, serves as a key input to the subsequent
DBN-based state estimation module, which categorizes
the controller state into Normal, Fault, or Attack.

Formally, the residual can be expressed as:

r(t) = f(yref(t): yctrl(t)) (D)

Where, y,.r(t): output of the reference logic (LAM),
Veer1 (t): output of the actual controller, f(+): comparison
function depending on the signal type.

Specifically, for Boolean signals, residuals are defined
as:
0, Vref ) = Yeer1 (1)
r(t) = { 2
( ) 1: yref(t) * yctrl(t) ( )
and for REAL/SINT signals, residuals are defined as:
r(t) = yref(t) = Yeeri(t) (3)

In this study, the residual definitions were limited to
Boolean, REAL, and SINT signals, as these represent the
actual data types generated by the target controller and
accessible through the engineering workstation. Other
data types (e.g., INT, DINT, DOUBLE) are not used in
the system, and thus were not considered in this
conceptual framework.

The anomaly decision is determined by applying a
threshold 6:

[r(t)] > 8 — Anomaly Detected (4)

For Boolean signals, a fixed threshold (6 = 0.5)
ensures immediate detection of mismatches, whereas for
REAL/SINT signals, the threshold is set considering
sensor precision and allowable tolerance.

Figure 1 illustrates the block diagram of the LAM
concept. The controller inputs are simultaneously
provided to both the reference logic and the actual
controller. Their outputs are compared to produce a
residual signal, which is then supplied to the DBN-based
state estimator along with other diagnostic information.
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Fig. 1. Block diagram of LAM and DBN for Real-time
controller threat state estimation

4. DBN-based Real-time Threat State Estimation

In this study, a DBN was employed to enable real-time
estimation of controller states. A DBN provides a
probabilistic framework to model the temporal
relationship between hidden states and observable
evidence, making it particularly suitable for signal
interpretation under various sources of uncertainty [4].

In our formulation, the hidden state variable is defined
with three categories: Normal, Fault, and Attack. At each
time step, the DBN computes the posterior probability of
the controller’s state based on the set of observations.

4.1 Modeling Environment and Tools

The DBN model was implemented using the
GeNIe/SMILE platform. GeNle supports both visual
model construction and probabilistic inference, enabling
intuitive design even for complex 1&C systems with a
large number of observation variables [5]. In this study,
the DBN input nodes were configured to include multiple
categories of evidence related to the SBCS controller:
internal diagnostic signals, sensor quality indicators, and
anomaly residuals generated by the LAM.
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4.2 Observation Nodes

The observation nodes of the DBN can be classified
into three major groups:

Logic-based anomaly residuals: Discrepancies
between the reference logic output and the actual
controller output for each DEMAND function.

Internal diagnostic signals: Indicators such as CPU
utilization, logic mismatch between redundant
controllers, communication port status, memory integrity,
and operator authority transitions.

Sensor Quality (SQ) signals: Quality states of key
instrumentation, including pressurizer pressure, steam
generator flow, main steam pressure, and turbine bypass
valve positions.

4.3 Hidden States and State Transition Modeling

In the proposed DBN, the hidden state variable
represents the operational status of the SBCS
controller, which can take one of three mutually
exclusive categories: Normal, Fault, or Attack. These
states are not directly observable, but are inferred from
the probabilistic relationship between the hidden states
and the observation nodes introduced in Section 4.2.

The temporal dynamics of the hidden state are
captured by the state transition probability matrix. In
general, the model assumes high self-persistence (e.g.,

Normal — Normal with high probability), while
transitions to abnormal conditions (Normal — Fault or

Normal — Attack) are modeled with lower

probabilities. Similarly, recovery transitions (e.g.,

Fault — Normal) are allowed but occur with relatively

low likelihood, reflecting realistic controller behavior.
Transitions between Fault and Attack are also possible
but are defined separately, since hardware/software
faults and intentional cyber intrusions typically exhibit
distinct temporal signatures.

The observation model links the hidden state to the
three groups of observation nodes:

. Logic-based anomaly residuals are strongly
indicative of deviations from intended control
logic, and their abnormal patterns increase the
likelihood of either Fault or Cyberattack.

. Internal diagnostic signals primarily reflect
hardware/software malfunctions, and thus
contribute more strongly to distinguishing Fault
from Cyberattack.

. Sensor Quality (SQ) signals provide contextual
evidence that helps confirm whether anomalies
are consistent with physical process faults or
artificially injected disturbances.

The posterior probability of each hidden state at
time t is computed using standard DBN inference
algorithms as:

P(X|04,) x
P(O¢|X0) Zx,_, P(Xe1Xe—1)P(X-1101.0-1) (5)

where X; is the hidden state (Normal, Fault, and
Attack), and O, represents the set of observation nodes
at time t. This recursive formulation enables real-time
estimation of controller status, continuously updating
the belief state as new evidence becomes available.

threat detection

5. Conclusions

This study proposes a conceptual framework for
detecting controller faults and cyber threats in the Steam
Bypass Control System (SBCS) of APR-1400. By
combining a LAM with a DBN, the approach enables
integrity verification of critical DEMAND signals and
probabilistic classification of controller states into
normal, fault, or attack.

The proposed method extends beyond simple signal
monitoring by leveraging process logic for anomaly
detection and probabilistic reasoning for real-time state
estimation, thereby offering potential support for
operator decision-making. This study conceptually
proposes a real-time threat detection framework
combining LAM and DBN. Future work will enhance
practicality through data-driven learning and validation.
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