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1. Introduction 

 

Small modular reactors (SMRs), which can be 

coupled with renewable sources such as solar, wind, or 

hydro power, are drawing attention as alternatives to 

fossil-fuel-based plants in the era of climate crisis [1, 2]. 

In 2012, the Korea Atomic Energy Research Institute 

(KAERI) achieved a milestone by developing the 

system-integrated modular advanced reactor (SMART), 

which became the world’s first SMR to receive standard 

design approval (SDA) [3]. Based on this foundation, 

KAERI proposed SMART100, a fully passive version 

with enhanced engineered safety features (ESFs) 

designed in response to lessons from the Fukushima 

accident, and the reactor also received SDA in 2024. 

Recently, “Team Korea,” led by Korea Hydro & 

Nuclear Power (KHNP), has launched the development 

of an innovative SMR (i-SMR) aimed at positioning 

Korea as a global leader in the future nuclear market. 

KAERI also participated in the i-SMR consortium, 

contributing to the overall reactor design at the basic 

design stage, including mechanical and hydraulic 

aspects of the reactor internals. The hydraulic analysis 

involved estimating overall pressure drops by 

considering events such as channel contractions and 

pipe friction losses [4]. These evaluations required 

iterative adjustments until the hydraulic performance 

met the mechanical design requirements. Lee et al. [5] 

suggested that artificial intelligence (AI) could support 

engineers by automating such repetitive evaluation 

processes. Their studies demonstrated that artificial 

neural networks can successfully replicate pressure 

losses in cases such as circular pipes [5] and sudden 

expansions [6]. 

This study extends previous work by exploring the 

use of large language models (LLMs) to predict 

hydraulic pressure losses instead of conventional 

multilayer perceptrons, with a particular focus on 

ChatGPT, which has recently attracted global attention. 

 

2. Methods and Results 

 

This section outlines the data generation process, the 

configuration of artificial neural network (ANN), and 

the results of predicting pressure drop in a circular pipe 

 

2.1 Empirical correlation 

 

The friction coefficient (λ ) for a smooth-walled 

circular pipe can be expressed as a function of the 

Reynolds number (Re) as follows [4], 
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The friction factor is a dimensionless parameter 

defined as the ratio of pressure drop to dynamic 

pressure. Once the friction factor is determined, the 

calculation of pressure drop becomes straightforward. 

 

2.2 ANN modeling 

Supervised training was performed using the Pytorch 

(ver. 2.3.1) [7] and pandas (ver. 2.2.2) [8] libraries in 

Python (Fig. 1). The Reynolds number was used as the 

input variable, while friction factor served as the output. 

Hidden layers fully connected input and output nodes, 

and ReLU function was applied as activation function. 

Training data were generated across the laminar, 

transitional, and turbulent regimes. Logarithmic scaling 

was applied to Re within the range of 500 to 10⁸. The 

dataset was divided into training (80%), validation 

(10%), and testing (10%) sets. A batch size of 5 and 

3000 epochs were used, with early stopping applied if 

the average validation loss fell below 10⁻7. The mean 

squared error (MSE) was adopted as the loss function, 

and the Adam algorithm was employed as the optimizer. 

 

 
Fig. 1. ANN of supervised learning for prediction pressure 

loss in circular pipe. 



 

 

 
Fig. 2. Example of ChatGPT interface. 

 

2.3 large language model 

A large language model (LLM) is an artificial 

intelligence model pre-trained on massive amounts of 

text data, capable of performing a wide range of 

language-based tasks. Recently, LLMs have also been 

applied to simple code generation and mathematical 

calculations. Here, pressure loss predictions were 

obtained using OpenAI’s GPT-4-turbo, a conversational 

prompt-based LLM, through the following two 

approaches: 

 

1. Constructing a prompt to output friction factor 

predictions by training a multilayer perceptron 

(MLP) with the dataset obtained from the flow 

pattern. 

2. Constructing a prompt to output friction factor 

predictions using well-known empirical 

correlations. 

 

Fig. 2 presents an example of the ChatGPT interface. 

 

2.4 Results 

Fig. 3 presents the friction loss coefficient as a 

function of the logarithm of the Reynolds number, 

predicted using both ANN and GPT. Laminar, 

transitional, turbulent regions are classified from 0 to 

3.3, from 3.3 to 3.6, from 3.6 to 8 of log(Re), 

respectively. Four MLP structures (5-10-5-10-5, 10-20-

10-20-10, 30-50-30-40, and 20-30-20-30-20-65) are 

used for predicting pressure loss in circular pipe. The 

ANN predictions show good agreement across all flow 

regimes, except in the case of the deficient-node 

configuration (5-10-5-10-5); in particular, low 

prediction accuracy is observed near 3.7 and 5.2 of 

log(Re). 

The GPT results, obtained using an MLP-based 

structure (GPT-ANN) and correlation reproduction 

(GPT-correlation), also demonstrate good agreement 

with the ground truth. The same dataset and residual 

criterion used in ANN modeling was identically 

adopted for an output of GPT-ANN. The results for 

laminar, transition, and turbulent regimes were obtained 

by respective inquiries because of the token limitation 

 
Fig. 3. Pressure loss prediction using ANN and GPT. 

 

in ChatGPT. On the other hand, the GPT-correlation 

that predicts the friction factor based on the empirical 

correlation shows quite different gradient especially in 

transition region. 

Table 1 summarizes the MSE of friction factor 

prediction from both ANN and GPT. The ANN with 

deficient-node configuration (5-10-5-10-5) doesn’t 

satisfy the convergence criterion. Also, GPT-correlation 

also shows a slightly large value of MSE. The 

difference is expected to be caused by the inherent 

discrepancy for raw data. 

 

Table 1. MSE of friction factor prediction. 

CASE Structure MSE 

ANN 

1-5-10-5-10-5-1 3.201 х10-6 

1-10-20-10-20-10-1 8.856 х10-7 

1-30-50-30-40-1 2.307 х10-7 

1-20-30-20-30-20-65-1 1.877 х10-7 

GPT 
ANN regression 1.781 х10-7 

Correlation reproduction 1.763 х10-6 

 

3. Conclusions 

 

This study demonstrated that large language models, 

such as ChatGPT, can be applied to predict pressure 

losses with accuracy comparable to conventional ANN 

approaches. The GPT-correlation approach reproduced 

classical formulas almost exactly, while GPT-ANN 

showed reasonable agreement with some sensitivity in 

transitional regime. 

These results highlight GPT’s potential as an 

accessible design aid, reducing the need for coding or 

dataset preparation. However, prompt dependence and 

lack of physical guarantees remain challenges, requiring 

careful validation in practical applications. 
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