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1. Introduction

Small modular reactors (SMRs), which can be
coupled with renewable sources such as solar, wind, or
hydro power, are drawing attention as alternatives to

fossil-fuel-based plants in the era of climate crisis [1, 2].

In 2012, the Korea Atomic Energy Research Institute
(KAERI) achieved a milestone by developing the
system-integrated modular advanced reactor (SMART),
which became the world’s first SMR to receive standard
design approval (SDA) [3]. Based on this foundation,
KAERI proposed SMART100, a fully passive version
with enhanced engineered safety features (ESFs)
designed in response to lessons from the Fukushima
accident, and the reactor also received SDA in 2024.
Recently, “Team Korea,” led by Korea Hydro &
Nuclear Power (KHNP), has launched the development
of an innovative SMR (i-SMR) aimed at positioning
Korea as a global leader in the future nuclear market.

KAERI also participated in the i-SMR consortium,
contributing to the overall reactor design at the basic
design stage, including mechanical and hydraulic
aspects of the reactor internals. The hydraulic analysis
involved estimating overall pressure drops by
considering events such as channel contractions and
pipe friction losses [4]. These evaluations required
iterative adjustments until the hydraulic performance
met the mechanical design requirements. Lee et al. [5]
suggested that artificial intelligence (Al) could support
engineers by automating such repetitive evaluation
processes. Their studies demonstrated that artificial
neural networks can successfully replicate pressure
losses in cases such as circular pipes [5] and sudden
expansions [6].

This study extends previous work by exploring the
use of large language models (LLMs) to predict
hydraulic pressure losses instead of conventional
multilayer perceptrons, with a particular focus on
ChatGPT, which has recently attracted global attention.

2. Methods and Results
This section outlines the data generation process, the
configuration of artificial neural network (ANN), and

the results of predicting pressure drop in a circular pipe

2.1 Empirical correlation

The friction coefficient (A ) for a smooth-walled
circular pipe can be expressed as a function of the
Reynolds number (Re) as follows [4],

1. laminar regime (Re < 2000)
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3. Turbulent regime (low) (4000 < Re < 10%)
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4. Turbulent regime (high) (Re > 10%)
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The friction factor is a dimensionless parameter
defined as the ratio of pressure drop to dynamic

pressure. Once the friction factor is determined, the
calculation of pressure drop becomes straightforward.

2.2 ANN modeling

Supervised training was performed using the Pytorch
(ver. 2.3.1) [7] and pandas (ver. 2.2.2) [8] libraries in
Python (Fig. 1). The Reynolds number was used as the
input variable, while friction factor served as the output.
Hidden layers fully connected input and output nodes,
and ReLU function was applied as activation function.

Training data were generated across the laminar,
transitional, and turbulent regimes. Logarithmic scaling
was applied to Re within the range of 500 to 10%. The
dataset was divided into training (80%), validation
(10%), and testing (10%) sets. A batch size of 5 and
3000 epochs were used, with early stopping applied if
the average validation loss fell below 10~7. The mean
squared error (MSE) was adopted as the loss function,
and the Adam algorithm was employed as the optimizer.
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Fig. 1. ANN of supervised learning for prediction pressure
loss in circular pipe.
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Fig. 2. Example of ChatGPT interface.

2.3 large language model

A large language model (LLM) is an artificial
intelligence model pre-trained on massive amounts of
text data, capable of performing a wide range of
language-based tasks. Recently, LLMs have also been
applied to simple code generation and mathematical
calculations. Here, pressure loss predictions were
obtained using OpenAI’s GPT-4-turbo, a conversational
prompt-based LLM, through the following two
approaches:

1. Constructing a prompt to output friction factor
predictions by training a multilayer perceptron
(MLP) with the dataset obtained from the flow
pattern.

2. Constructing a prompt to output friction factor
predictions  using  well-known  empirical
correlations.

Fig. 2 presents an example of the ChatGPT interface.

2.4 Results

Fig. 3 presents the friction loss coefficient as a
function of the logarithm of the Reynolds number,
predicted using both ANN and GPT. Laminar,
transitional, turbulent regions are classified from 0 to
3.3, from 3.3 to 3.6, from 3.6 to 8 of log(Re),
respectively. Four MLP structures (5-10-5-10-5, 10-20-
10-20-10, 30-50-30-40, and 20-30-20-30-20-65) are
used for predicting pressure loss in circular pipe. The
ANN predictions show good agreement across all flow
regimes, except in the case of the deficient-node
configuration  (5-10-5-10-5); in particular, low
prediction accuracy is observed near 3.7 and 5.2 of
log(Re).

The GPT results, obtained using an MLP-based
structure (GPT-ANN) and correlation reproduction
(GPT-correlation), also demonstrate good agreement
with the ground truth. The same dataset and residual
criterion used in ANN modeling was identically
adopted for an output of GPT-ANN. The results for
laminar, transition, and turbulent regimes were obtained
by respective inquiries because of the token limitation
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Fig. 3. Pressure loss prediction using ANN and GPT.

in ChatGPT. On the other hand, the GPT-correlation
that predicts the friction factor based on the empirical
correlation shows quite different gradient especially in
transition region.

Table 1 summarizes the MSE of friction factor
prediction from both ANN and GPT. The ANN with
deficient-node configuration (5-10-5-10-5) doesn’t
satisfy the convergence criterion. Also, GPT-correlation
also shows a slightly large value of MSE. The
difference is expected to be caused by the inherent
discrepancy for raw data.

Table 1. MSE of friction factor prediction.

CASE Structure MSE
1-5-10-5-10-5-1 3.201 x 106
1-10-20-10-20-10-1 8.856 x 107
ANN 1-30-50-30-40-1 2307 x 107
1-20-30-20-30-20-65-1 1.877 x 107
ANN regression 1.781 x 107
GPT Correlation reproduction 1.763 x 10®

3. Conclusions

This study demonstrated that large language models,
such as ChatGPT, can be applied to predict pressure
losses with accuracy comparable to conventional ANN
approaches. The GPT-correlation approach reproduced
classical formulas almost exactly, while GPT-ANN
showed reasonable agreement with some sensitivity in
transitional regime.

These results highlight GPT’s potential as an
accessible design aid, reducing the need for coding or
dataset preparation. However, prompt dependence and
lack of physical guarantees remain challenges, requiring
careful validation in practical applications.
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