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1. Introduction 

 
Structural Health Monitoring (SHM) is essential for 

detecting damage in nuclear power plant structures, but 

its credibility is often compromised by environmental 

variability. Temperature changes alter material 

properties and modal responses, which can mask or 

mimic structural damage and lead to false alarms and 

missed detections. Conventional compensation methods 

such as regression, cointegration, or Principal 

Component Analysis (PCA) assume linear and stationary 

relations, making them inadequate under multi-sensor 

conditions. 

To address this issue, we propose an unsupervised 

learning framework for temperature-robust damage 

detection. The method combines frequency patching to 

capture localized spectral shifts, a Conditional 

Variational Autoencoder (CVAE) to learn compact latent 

features of healthy states, and Maximum Mean 

Discrepancy (MMD)–based domain adaptation to align 

distributions across different temperatures. A 

temperature-aware scoring scheme is then applied to 

provide consistent anomaly indices. This approach 

enables reliable detection of structural damage without 

requiring labeled damage data. 

 

2. Methodology 

 

The proposed method consists of four major stages: 

frequency-domain preprocessing, generative modeling 

with CVAE, latent alignment with MMD, and 

temperature-aware scoring. 

 

2.1 Frequency patching 

 

To extract damage-sensitive but temperature-robust 

features, the raw time-domain responses must first be 

converted into a spectral representation. Given a multi-

channel time-domain response window 𝑥 ∈ ℝ𝐿×𝐶 , where 

𝐿  is the number of samples, and 𝐶  is the number of 

sensor channels, a Hann window 𝑤 ∈ ℝ𝐿 is applied. The 

real Fourier Transform is then computed as 

𝑋(𝑓, 𝑐) = 𝑟𝐹𝐹𝑇[𝑤⨀𝑥(: , 𝑐)], 𝑓 = 0,1, … , 𝐹+, (1) 

where ⨀ denotes element-wise multiplication, 𝑋(𝑓, 𝑐) is 

the complex coefficient at frequency index 𝑓 for channel 

𝑐  and 𝐹+ = [𝐿/2] is the number of positive frequency 

bins. 

The log-magnitude spectrum is then obtained as  

𝑀(𝑓, 𝑐) = log(1 + |𝑋(𝑓, 𝑐)|),  (2) 

The frequency axis is divided into non-overlapping 

bands of width 𝐵. Each patch is defined as  

𝑋[𝑝, : , : ] = 𝑀[𝑝𝐵: (𝑝 + 1)𝐵, : ], 𝑝 = 0, … , 𝑃 − 1, (3) 

with 𝑃 = [𝐹+/𝐵].  The resulting tensor 𝑋 ∈ 𝑅𝑃×𝐵×𝐶 

captures the localized frequency behavior. 

  

2.2 Conditional Variational Autoencoder (CVAE) 

 

To build a compact generative model representing 

responses of a healthy structure, we employ a CVAE. 

The encoder defines an approximate posterior 

𝑞𝜃(𝑧|𝑋) = 𝒩 (𝑧; 𝜇𝜃(𝑋), 𝑑𝑖𝑎𝑔 (𝜎𝜃
2(𝑋))) , (4) 

where 𝑧 ∈ ℝ𝑑  is the latent vector of dimension 𝑑, and 

𝜇𝜃(𝑋) ∈ ℝ𝑑    and 𝜎𝜃
2(𝑋) ∈ ℝ𝑑  are the encoder outputs 

parameterized by weights 𝜃.  The decoder reconstructs 

patches as  

𝑝𝜙(𝑋|𝑧) = 𝒩(𝑋̂; 𝑓𝜙(𝑧), 𝜎2𝐼), (5) 

with parameter 𝜙. 

The training objective is the evidence lower bound 

(ELBO): 

ℒ𝐸𝐿𝐵𝑂(𝑋) = ‖𝑋 − 𝑋̂‖
1

+ 𝛽 ∙ 𝐾𝐿[𝑞𝜃(𝑧|𝑋) ∥ 𝒩(0, 𝐼)], (6) 

where 𝛽 is a weighting factor. The KL divergence term 

has closed form: 

𝐾𝐿[𝑞𝜃(𝑧|𝑋) ∥ 𝒩(0, 𝐼)] =
1

2
∑(𝜇𝑘

2 + 𝜎𝑘
2 − log 𝜎𝑘

2 − 1).

𝑑

𝑘=1

 (7) 

where 𝜇𝑘 and 𝜎𝑘
2 denote the k-th components of 𝜇 𝜃(𝑋) 

and 𝜎𝜃
2(𝑋). 

 

2.3 Domain adaptation with MMD 

 

Since data of healthy structural responses under different 

temperature ranges belong to different distributions, 

direct application of the CVAE may still entangle 

temperature variation with structural characteristics. To 

overcome this, we introduce MMD for unsupervised 

domain adaptation. Let 𝑍𝑆 = {𝑧𝑖
𝑆}𝑖=1

𝑏  and 𝑍𝑇 = {𝑧𝑗
𝑇}𝑗=1

𝑏  

denote mini-batches of latent vectors from source (C2: 

wide range temperature, healthy) and target (C1: narrow 

range temperature, healthy) domains. The MMD is then 

defined as 



 

 

 

𝑀𝑀𝐷2(𝑍𝑠, 𝑍𝑇) =  
1

𝑏(𝑏 − 1)
∑ 𝑘(𝑧𝑖

𝑆, 𝑧𝑖′
𝑆 )

𝑖≠𝑖′

+

1

𝑏(𝑏 − 1)
∑ 𝑘 (𝑧𝑗

𝑇 , 𝑧𝑗′
𝑇 )

𝑗≠𝑗′

−
2

𝑏2
∑ 𝑘(𝑧𝑖

𝑆, 𝑧𝑗
𝑇)

𝑖𝑗

, (8)
 

where the kernel is  

𝑘(𝑢, 𝑣) = ∑ exp(−
‖𝑢 − 𝑣‖2

2

2𝜎𝑚
2

) .

𝑀

𝑚=1

(9) 

The Stage-B training objective combines 

reconstruction, KL regularization, and MMD alignment: 

ℒ =  𝔼𝑋∈(𝐶1∪𝐶2)[ℒ𝐸𝐿𝐵𝑂(𝑋)] + 𝜆𝑀𝑀𝐷 ∙ 𝑀𝑀𝐷2(𝑍𝑆, 𝑍𝑇)(10) 

where 𝜆𝑀𝑀𝐷 is the adaption weight. 

 

2.4 Temperature-aware scoring 

 

Finally, to detect anomalies in a temperature-consistent 

manner, reconstruction residuals are normalized by 

temperature-specific statistics. For a test sample, the 

residual is 

𝑟(𝑥) = ‖𝑋 − 𝑋̂‖
1

. (11) 

Residuals of the healthy structural responses are 

collected per temperature bin 𝑏(𝑇), with mean 𝜇𝑏(𝑇) and 

standard deviation 𝜎𝑏(𝑇). The anomaly score is defined 

as 

𝑆(𝑥, 𝑇) =
𝑟(𝑥) − 𝜇𝑏(𝑇)

𝜎𝑏(𝑇)
. (12) 

 

3. Numerical simulations 

 

3.1 Data 

 

A numerical analysis was conducted on a 9-story shear 

building idealization of the benchmark example by 

Ohtori et al. (2004). The model was subjected to a small-

amplitude, broadband, zero-mean stochastic base 

acceleration used as a proxy for ambient vibration. 

During the implementation, the excitation is modeled as 

a discrete-time white Gaussian base-acceleration 

sequence with its variance calibrated to keep responses 

within the linear-elastic range, for consistency with 

operational modal-analysis practice. The reference 

benchmark represents a steel frame with 198 degrees of 

freedom (DOFs), consisting of 21 nodes and 28 

structural elements (columns and beams). The structure 

was simplified into a 9-DOF shear building by 

calculating equivalent mass and stiffness matrices for 

each floor, as illustrated in Figure 1. 

Structural damage was introduced by reducing the 

stiffness of selected column members, which translates 

into a reduction in story stiffness in the 9-DOF model.  

 

 
Fig. 1.Schematics of a 9-story shear building 

 

Temperature effects were modeled by adjusting the 

stiffness of each story according to the empirical 

relationship 

𝑓𝑇 ≈ 𝑓0 ∙ √1 − 𝛽𝐸 ∙ ∆𝑇, (13) 

where 𝑓𝑇 is the natural frequency at temperature 𝑇, 𝑓0 is 

the baseline temperature, 𝛽𝐸  denotes the temperature-

elastic modulus coefficient, and ∆𝑇 is the deviation from 

the baseline temperature. 

By combining these two mechanisms (i) stiffness 

reduction for damage and (ii) temperature-dependent 

frequency shifts, three datasets were generated: 

 C1 (Target domain): Healthy responses under a 

20°C 

 C2 (Source domain): Healthy responses under a 

wide temperature range (−10~40°C) 

 C3 (Damaged): Responses with imposed stiffness 

reductions at various floors under multiple 

temperatures 

Figure 2. shows that the fundamental frequency is 

influenced by both temperature and damage degree, 

decreasing systematically as temperature rises and 

stiffness reduction increases. 

 
Fig. 2. Contour plot of the fundamental frequency under 

various temperature and damage degree 

 

3.2 Results 

 

To quantify temperature‐robust damage detection, we 

compared the results by a conventional PCA-only 

baseline with those by the proposed method. 

 



 

 

 

 

 
Fig. 3. Score distributions: (a) PCA-only, and (b) proposed 

temperature-invariant method 

 

Figure 3 provides normalized histograms where the x-

axis is the temperature-aware z-score of the 

reconstruction residual, and the y-axis is the probability 

density; the vertical dashed line marks the 95th percentile 

of healthy scores. The results by “PCA-only” in Figure 

3(a) show substantial overlap of healthy (C1+C2) and 

damaged (C3) near the threshold, indicating residual 

temperature leakage and weaker separability. In contrast, 

the results by the proposed method in Figure 3(b) 

displays a clear left–right separation: healthy samples 

concentrate left of the threshold, while damaged shift 

right, yielding higher detection performance and more 

stable behavior across temperatures. 

 
4. Conclusions 

 

We introduced a temperature-robust damage detector 

that turns responses into frequency patches, learns a 

healthy manifold with an CVAE, and uses MMD to make 

the latent space temperature-invariant; decisions rely on 

a temperature-aware z-score. Compared with a PCA-

only baseline, it shows clearer healthy–damage 

separation and a flatter healthy false positive ratio (≈5%) 

without using damaged data for training. Further 

research is underway to validate using seismic responses 

and real-bridge data, and embed physics (mode-band 

priors, temperature–stiffness relations, damping/peak 

constraints) to derive a damage index that is sensitive to 

damage severity. 

 

REFERENCES 

 
[1] Maghareh, A., Barnes, M. J., and Sun, Z. Evaluation of the 

9-story benchmark building shear model. University of 

Notre Dame, 2012. 

[2] Ohtori, Y., Christenson, R. E., Spencer, B. F., and Dyke, S. 

J. "Benchmark control problems for seismically excited 

nonlinear buildings." ASCE Journal of Engineering 

Mechanics 130, no. 4 (2004): 366–385. 

[3] Pol, A. A., Berger, V., Germain, C., Cerminara, G., and 

Pierini, M. "Anomaly detection with conditional 

variational autoencoders." In 2019 18th IEEE International 

Conference on Machine Learning and Applications 

(ICMLA), 1651–1657. IEEE, 2019. 

[4] Luo, J., Huang, M., and Lei, Y. "Temperature effect on 

vibration properties and vibration-based damage 

identification of bridge structures: A literature review." 

Buildings 12, no. 8 (2022): 1209. 


