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1. Introduction

Structural Health Monitoring (SHM) is essential for
detecting damage in nuclear power plant structures, but
its credibility is often compromised by environmental
variability. Temperature changes alter material
properties and modal responses, which can mask or
mimic structural damage and lead to false alarms and
missed detections. Conventional compensation methods
such as regression, cointegration, or Principal
Component Analysis (PCA) assume linear and stationary
relations, making them inadequate under multi-sensor
conditions.

To address this issue, we propose an unsupervised
learning framework for temperature-robust damage
detection. The method combines frequency patching to
capture localized spectral shifts, a Conditional
Variational Autoencoder (CVAE) to learn compact latent
features of healthy states, and Maximum Mean
Discrepancy (MMD)-based domain adaptation to align
distributions  across  different temperatures. A
temperature-aware scoring scheme is then applied to
provide consistent anomaly indices. This approach
enables reliable detection of structural damage without
requiring labeled damage data.

2. Methodology

The proposed method consists of four major stages:
frequency-domain preprocessing, generative modeling
with CVAE, latent alignment with MMD, and
temperature-aware scoring.

2.1 Frequency patching

To extract damage-sensitive but temperature-robust
features, the raw time-domain responses must first be
converted into a spectral representation. Given a multi-
channel time-domain response window x € RE*¢, where
L is the number of samples, and C is the number of
sensor channels, a Hann window w € R’ is applied. The
real Fourier Transform is then computed as

X(f,c) =rFFTw®Ox(,c)],f =01, ..,F,, )
where © denotes element-wise multiplication, X (f, ¢) is
the complex coefficient at frequency index f for channel
¢ and F, = [L/2] is the number of positive frequency
bins.

The log-magnitude spectrum is then obtained as

M(f,c) = log(1 + |X(f, ), (2)

The frequency axis is divided into non-overlapping
bands of width B. Each patch is defined as

Xlp,:,:1=M[pB:(p + 1)B,:],p=0,..,P—1, (3)

with P = [F,/B]. The resulting tensor X € RP*BXC
captures the localized frequency behavior.

2.2 Conditional Variational Autoencoder (CVAE)

To build a compact generative model representing
responses of a healthy structure, we employ a CVAE.
The encoder defines an approximate posterior

40 21X) = N (1900, diag (5300)), (@)
where z € R? is the latent vector of dimension d, and
te(X) € R? and oZ(X) € R? are the encoder outputs
parameterized by weights 6. The decoder reconstructs
patches as

pe(X|2) = N(X; f(2),0%1), (5)
with parameter ¢.
The training objective is the evidence lower bound
(ELBO):
Lriso(X) = ||X = X||, + B - KLIqs (21X) 1| M(0,1)], (6)
where £ is a weighting factor. The KL divergence term
has closed form:

d
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where p;, and 6 denote the k-th components of u o (X)
and a¢ (X).

2.3 Domain adaptation with MMD

Since data of healthy structural responses under different
temperature ranges belong to different distributions,
direct application of the CVAE may still entangle
temperature variation with structural characteristics. To
overcome this, we introduce MMD for unsupervised
domain adaptation. Let Zs = {z}/_, and Zr = {z]}?_,
denote mini-batches of latent vectors from source (C2:
wide range temperature, healthy) and target (C1: narrow
range temperature, healthy) domains. The MMD is then
defined as
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where the kernel is
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The  Stage-B  training  objective  combines

reconstruction, KL regularization, and MMD alignment:
L = Execrucz)Lerso X)) + Aump - MMD?(Zs, Z1)(10)
where Ayp is the adaption weight.

2.4 Temperature-aware scoring

Finally, to detect anomalies in a temperature-consistent
manner, reconstruction residuals are normalized by
temperature-specific statistics. For a test sample, the
residual is
r(x) = [|x - X]| . (11)
Residuals of the healthy structural responses are
collected per temperature bin b(T), with mean p,(ry and
standard deviation g;,(ry. The anomaly score is defined
as
r(x) — HUp(T)
Gy

S(x,T) = (12)

3. Numerical simulations
3.1 Data

A numerical analysis was conducted on a 9-story shear
building idealization of the benchmark example by
Ohtori et al. (2004). The model was subjected to a small-
amplitude, broadband, zero-mean stochastic base
acceleration used as a proxy for ambient vibration.
During the implementation, the excitation is modeled as
a discrete-time white Gaussian base-acceleration
sequence with its variance calibrated to keep responses
within the linear-elastic range, for consistency with
operational modal-analysis practice. The reference
benchmark represents a steel frame with 198 degrees of
freedom (DOFs), consisting of 21 nodes and 28
structural elements (columns and beams). The structure
was simplified into a 9-DOF shear building by
calculating equivalent mass and stiffness matrices for
each floor, as illustrated in Figure 1.

Structural damage was introduced by reducing the
stiffness of selected column members, which translates
into a reduction in story stiffness in the 9-DOF model.
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Fig. 1.Schematics of a 9-story shear building

Temperature effects were modeled by adjusting the
stiffness of each story according to the empirical

relationship

fr=foy1—BgAT, (13)
where fr is the natural frequency at temperature T, f; is
the baseline temperature, Sy denotes the temperature-
elastic modulus coefficient, and AT is the deviation from
the baseline temperature.

By combining these two mechanisms (i) stiffness
reduction for damage and (ii) temperature-dependent
frequency shifts, three datasets were generated:

+ CI1 (Target domain): Healthy responses under a
20°C

+ C2 (Source domain): Healthy responses under a
wide temperature range (—10~40°C)

- C3 (Damaged): Responses with imposed stiffness
reductions at various floors under multiple
temperatures

Figure 2. shows that the fundamental frequency is
influenced by both temperature and damage degree,
decreasing systematically as temperature rises and
stiffness reduction increases.
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Fig. 2. Contour plot of the fundamental frequency under
various temperature and damage degree

3.2 Results

To quantify temperature-robust damage detection, we
compared the results by a conventional PCA-only
baseline with those by the proposed method.
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Fig. 3. Score distributions: (a) PCA-only, and (b) proposed
temperature-invariant method

Figure 3 provides normalized histograms where the x-
axis is the temperature-aware z-score of the
reconstruction residual, and the y-axis is the probability
density; the vertical dashed line marks the 95th percentile
of healthy scores. The results by “PCA-only” in Figure
3(a) show substantial overlap of healthy (C1+C2) and
damaged (C3) near the threshold, indicating residual
temperature leakage and weaker separability. In contrast,
the results by the proposed method in Figure 3(b)
displays a clear left-right separation: healthy samples
concentrate left of the threshold, while damaged shift
right, yielding higher detection performance and more
stable behavior across temperatures.

4. Conclusions

We introduced a temperature-robust damage detector
that turns responses into frequency patches, learns a
healthy manifold with an CVAE, and uses MMD to make
the latent space temperature-invariant; decisions rely on
a temperature-aware z-score. Compared with a PCA-
only baseline, it shows clearer healthy—damage
separation and a flatter healthy false positive ratio (=5%)
without using damaged data for training. Further
research is underway to validate using seismic responses
and real-bridge data, and embed physics (mode-band
priors, temperature—stiffness relations, damping/peak
constraints) to derive a damage index that is sensitive to
damage severity.
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