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1. Introduction

Following a nuclear accident, precise estimation of
ground-level contamination distribution is essential for
environmental recovery and the protection of human
lives. Unmanned Aerial Vehicle (UAV)-based airborne
radiation surveys enable rapid measurement over wide
areas while minimizing human exposure to hazardous
regions. One of the major physical factors affecting
radiation intensity in outdoor environments is the
inverse-square law, which states that radiation intensity
decreases proportionally to the square of the distance [1].
Even in environments where only the inverse-square law
is considered, reconstructing ground contamination
distribution is not straightforward. Typically, the number
of airborne observations is far fewer than the number of
ground grid points to be reconstructed. Consequently, the
linear system expressed as b = Ax, where b is the vector
of UAV-measured radiation intensities, 4 is the inverse-
square distance matrix between UAV and ground grids,
and x is the ground contamination distribution vector,
becomes an ill-posed problem with no guarantee of a
unique solution [2]. Therefore, ground contamination
reconstruction remains mathematically challenging even
when only distance-based attenuation is considered. In
this paper, we propose an IDW-ResUNet deep learning
framework to estimate ground contamination
distribution from sparse airborne measurements in a
simulated radioactive environment governed by the
inverse-square law. This framework provides a
foundation for future extensions that incorporate
scattering, shielding, and terrain effects.

2. Methods and Results
2.1 Problem Formulation
The forward problem is defined as computing the

vector b given the vector x and the matrix A:
b = Ax €))

Here, b € R™ is the vector of radiation intensities
measured by the UAV, x € R" is the ground
contamination distribution vector, and A € R™ " is the
inverse-square distance matrix between UAV sampling
positions and ground grid points, defined as:
Ayj=———— )
"yl 2
where y; denotes the horizontal position of the UAV at
measurement i, p; is the ground grid point, and h; is the
UAV altitude at measurement i. In the forward problem,
the computation of b is straightforward, requiring only a
single matrix multiplication.

However, reconstructing the ground contamination
distribution involves solving the inverse problem of
estimating x given 4 and b. Since m < n, the solution
of x is not unique, and the problem becomes ill-posed.
As aresult, accurate reconstruction is highly challenging,
necessitating the use of approximation techniques.

2.2 IDW-ResUNet Architecture

We employed a ResUNet model, an encoder—decoder
architecture with residual connections, to extract features
from the input data and reconstruct the ground
contamination distribution [3]. The residual connections
help reduce information loss during training, thereby
improving both the performance and stability of the
model. In addition, radiation intensity measurements
acquired by the UAV at an altitude of 10 m with 10 m
spacing were interpolated using the Inverse Distance
Weighting (IDW) method to generate a 128 x 128 grid
representation of the plane at that altitude. The
interpolation process transformed the data into a dense
representation, which enables the ResUNet model to
effectively capture local correlations between
neighboring pixels and continuous spatial patterns [4],
thereby incorporating richer spatial information. The
resulting dense input images were used as inputs to the



model, and the outputs were reconstructed 128 x 128
ground contamination distribution maps.
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Fig. 1. IDW-ResUNet Architecture

2.3 Dataset Generation and Training

Using a Python-based program, we generated
elliptical radioactive contamination distributions in
which the intensity decreases with distance from the
center. A total of 12,000 synthetic environments of size
128 x 128 grids were created by varying the center
position, rotation angle (€), maximum spread distance
(threshold), and wvariance of the contamination
distribution. In each environment, UAV measurement
data were collected at an altitude of 10 m and horizontal
intervals of 10 m, with radiation intensity calculated
based on the inverse-square law. The entire dataset was
divided into 80% for training, 10% for validation, and 10%
for testing. Model training employed the Adam optimizer
with the Mean Squared Error (MSE) loss function.
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Fig. 2. Examples of (a) a ground truth radiation map and (b) a
UAYV measurement path.
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Fig. 3. Training and validation MSE Loss curves over 31
epochs. The similar decreasing trends of training and
validation losses indicate that the model was trained stably
without overfitting.

2.4 Preformace Evaluation

For comparison, we considered geostatistical
interpolation methods such as IDW and Kriging [6], as
well as deep learning models including MLP, CNN,
Residual CNN, U-Net, and ResUNet trained with non-
interpolated sparse input data. Model performance was
evaluated using MSE, MAE, PSNR, and SSIM, which
are widely employed image similarity metrics [7].
Among them, MSE, MAE, and PSNR quantitatively
measure pixel-wise differences at corresponding
locations, while SSIM assesses structural similarity in a
manner consistent with human visual perception. The
evaluation results demonstrate that the proposed IDW-
ResUNet framework—ResUNet trained on dense data
interpolated with IDW—achieved superior performance
across all metrics compared to conventional methods and
other models.

Table I: Error and Score analysis

MSE MAE PSNR SSIM
IDW 0.060352  0.196762 12.474 0.2768
Kriging 0.018677  0.107056 17.545 0.3444
MLP 0.001275  0.021881 30.362 0.7115
CNN 0.001294  0.021936 30.998 0.6863
Residual
CNN 0.001275  0.021797 31.309 0.6722
U-Net 0.003118  0.020981 27.285 0.8958
ResUNet  0.002378  0.018303 28.027 0.9244
IDW-
ResUNet 0.000258  0.007237 37.768 0.9783




Fig.4 Examples of a ground truth image and estimated images
obtained using different methods. (a) Ground truth image; (b)
IDW; (c) Kriging; (d) MLP; (e) CNN; (f) Residual CNN; (g)
U-Net; (h) ResUNet; (i) IDW-ResUNet.

3. Conclusions

In this study, we addressed the inverse problem of
reconstructing ground-level radioactive contamination
distribution from UAV-based airborne radiation
measurements in an environment governed solely by the
inverse-square law. This problem is mathematically ill-
posed, lacking a unique solution; to overcome this
challenge, we employed a ResUNet-based model. To
mitigate the sparsity of airborne data, dense input images
were generated using IDW interpolation and applied to
the model. Experimental results showed that the
proposed approach outperformed conventional methods
in image similarity metrics such as PSNR and SSIM.
These findings demonstrate the effectiveness of the
model in estimating the primary attenuation factor of
radiation intensity—the inverse-square law—and
suggest its potential applicability in more complex real-
world environments where scattering, shielding, and

terrain effects are present. Ultimately, this work provides
a foundation for future studies integrating multiple
physical factors into contamination reconstruction
frameworks.
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