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1. Introduction 

 
Following a nuclear accident, precise estimation of 

ground-level contamination distribution is essential for 

environmental recovery and the protection of human 

lives. Unmanned Aerial Vehicle (UAV)-based airborne 

radiation surveys enable rapid measurement over wide 

areas while minimizing human exposure to hazardous 

regions. One of the major physical factors affecting 

radiation intensity in outdoor environments is the 

inverse-square law, which states that radiation intensity 

decreases proportionally to the square of the distance [1]. 

Even in environments where only the inverse-square law 

is considered, reconstructing ground contamination 

distribution is not straightforward. Typically, the number 

of airborne observations is far fewer than the number of 

ground grid points to be reconstructed. Consequently, the 

linear system expressed as 𝑏 = 𝐴𝑥, where 𝑏 is the vector 

of UAV-measured radiation intensities, 𝐴 is the inverse-

square distance matrix between UAV and ground grids, 

and 𝑥  is the ground contamination distribution vector, 

becomes an ill-posed problem with no guarantee of a 

unique solution [2]. Therefore, ground contamination 

reconstruction remains mathematically challenging even 

when only distance-based attenuation is considered. In 

this paper, we propose an IDW-ResUNet deep learning 

framework to estimate ground contamination 

distribution from sparse airborne measurements in a 

simulated radioactive environment governed by the 

inverse-square law. This framework provides a 

foundation for future extensions that incorporate 

scattering, shielding, and terrain effects. 

 

2. Methods and Results 

 

2.1 Problem Formulation 

 

The forward problem is defined as computing the 

vector 𝑏 given the vector 𝑥 and the matrix 𝐴: 

𝑏 = 𝐴𝑥 (1) 

Here, 𝑏 ∈ ℝ𝑚  is the vector of radiation intensities 

measured by the UAV, 𝑥 ∈  ℝ𝑛  is the ground 

contamination distribution vector, and 𝐴 ∈  ℝ𝑚×𝑛 is the 

inverse-square distance matrix between UAV sampling 

positions and ground grid points, defined as: 

𝐴𝑖𝑗 =
1

‖𝑦𝑖 − 𝑝𝑗‖
2

+ ℎ𝑖
2

 (2) 

where 𝑦𝑖 denotes the horizontal position of the UAV at 

measurement 𝑖, 𝑝𝑗 is the ground grid point, and ℎ𝑖 is the 

UAV altitude at measurement 𝑖. In the forward problem, 

the computation of 𝑏 is straightforward, requiring only a 

single matrix multiplication. 

However, reconstructing the ground contamination 

distribution involves solving the inverse problem of 

estimating 𝑥 given 𝐴 and 𝑏. Since 𝑚 ≪ 𝑛, the solution 

of 𝑥 is not unique, and the problem becomes ill-posed. 

As a result, accurate reconstruction is highly challenging, 

necessitating the use of approximation techniques. 

 

2.2 IDW-ResUNet Architecture 

 

We employed a ResUNet model, an encoder–decoder 

architecture with residual connections, to extract features 

from the input data and reconstruct the ground 

contamination distribution [3]. The residual connections 

help reduce information loss during training, thereby 

improving both the performance and stability of the 

model. In addition, radiation intensity measurements 

acquired by the UAV at an altitude of 10 m with 10 m 

spacing were interpolated using the Inverse Distance 

Weighting (IDW) method to generate a 128 × 128 grid 

representation of the plane at that altitude. The 

interpolation process transformed the data into a dense 

representation, which enables the ResUNet model to 

effectively capture local correlations between 

neighboring pixels and continuous spatial patterns [4], 

thereby incorporating richer spatial information. The 

resulting dense input images were used as inputs to the 



 

 

model, and the outputs were reconstructed 128 × 128 

ground contamination distribution maps. 

 

 

Fig. 1. IDW-ResUNet Architecture 

 

2.3 Dataset Generation and Training 

 

Using a Python-based program, we generated 

elliptical radioactive contamination distributions in 

which the intensity decreases with distance from the 

center. A total of 12,000 synthetic environments of size 

128 × 128  grids were created by varying the center 

position, rotation angle (𝜃), maximum spread distance 

(threshold), and variance of the contamination 

distribution. In each environment, UAV measurement 

data were collected at an altitude of 10 m and horizontal 

intervals of 10 m, with radiation intensity calculated 

based on the inverse-square law. The entire dataset was 

divided into 80% for training, 10% for validation, and 10% 

for testing. Model training employed the Adam optimizer 

with the Mean Squared Error (MSE) loss function. 

 

 

 
Fig. 2. Examples of (a) a ground truth radiation map and (b) a 

UAV measurement path. 

 

 
Fig. 3. Training and validation MSE Loss curves over 31 

epochs. The similar decreasing trends of training and 

validation losses indicate that the model was trained stably 

without overfitting. 

 

2.4 Preformace Evaluation 

 

For comparison, we considered geostatistical 

interpolation methods such as IDW and Kriging [6], as 

well as deep learning models including MLP, CNN, 

Residual CNN, U-Net, and ResUNet trained with non-

interpolated sparse input data. Model performance was 

evaluated using MSE, MAE, PSNR, and SSIM, which 

are widely employed image similarity metrics [7]. 

Among them, MSE, MAE, and PSNR quantitatively 

measure pixel-wise differences at corresponding 

locations, while SSIM assesses structural similarity in a 

manner consistent with human visual perception. The 

evaluation results demonstrate that the proposed IDW-

ResUNet framework—ResUNet trained on dense data 

interpolated with IDW—achieved superior performance 

across all metrics compared to conventional methods and 

other models. 

 

Table I: Error and Score analysis 

 MSE MAE PSNR SSIM 

IDW 0.060352 0.196762 12.474 0.2768 

Kriging 0.018677 0.107056 17.545 0.3444 

MLP 0.001275 0.021881 30.362 0.7115 

CNN 0.001294 0.021936 30.998 0.6863 

Residual 
CNN 

0.001275 0.021797 31.309 0.6722 

U-Net 0.003118 0.020981 27.285 0.8958 

ResUNet 0.002378 0.018303 28.027 0.9244 

IDW-

ResUNet 
0.000258 0.007237 37.768 0.9783 
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Fig.4 Examples of a ground truth image and estimated images 

obtained using different methods. (a) Ground truth image; (b) 

IDW; (c) Kriging; (d) MLP; (e) CNN; (f) Residual CNN; (g) 

U-Net; (h) ResUNet; (i) IDW-ResUNet. 

 

3. Conclusions 

 

In this study, we addressed the inverse problem of 

reconstructing ground-level radioactive contamination 

distribution from UAV-based airborne radiation 

measurements in an environment governed solely by the 

inverse-square law. This problem is mathematically ill-

posed, lacking a unique solution; to overcome this 

challenge, we employed a ResUNet-based model. To 

mitigate the sparsity of airborne data, dense input images 

were generated using IDW interpolation and applied to 

the model. Experimental results showed that the 

proposed approach outperformed conventional methods 

in image similarity metrics such as PSNR and SSIM. 

These findings demonstrate the effectiveness of the 

model in estimating the primary attenuation factor of 

radiation intensity—the inverse-square law—and 

suggest its potential applicability in more complex real-

world environments where scattering, shielding, and 

terrain effects are present. Ultimately, this work provides 

a foundation for future studies integrating multiple 

physical factors into contamination reconstruction 

frameworks. 
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