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1. Introduction 

 

The feasibility of applying artificial intelligence (AI) 

to the operation of nuclear power plants under severe 

accidents has been investigated with various types of 

models. Leveraging time-series observations of thermal-

hydraulic variables obtained from the main control room, 
various neural-network models have been developed for 

state prediction[1,2]. With the development of AI models, 

forecasting the behavior of thermal-hydraulic variables 

has improved. With the precise predictions on the 

nuclear power plant status, valid result of the mitigation 

strategy enables the assessment of mitigation strategies. 

Regarding the appropriate timing of the mitigation 

strategy, various trial must be conducted with simulation. 

In previous studies, establishing surrogate model with 

data acquired from the system code brings adequate 

agreements for constructing environment for the 

reinforcement learning (RL). With surrogate model 
developed, time consumption on the system codes such 

as MELCOR or MAAP could be saved. The prediction 

on the status of containment building integrity or the 

reactor pressure vessel integrity could be achieved with 

surrogate model. The surrogate model provides 

compatible environment for the RL training [3]. 

In this study, one of the stress test scenarios conducted 

in Hanul 3,4 was assessed [4]. The scenario is extended 

loss of alternate power (ELAP) and loss of ultimate heat 

sink (LOUHS). In this scenario, the only available safety 

components are, turbine driven auxiliary feedwater 
pump (TDAFW) and containment spray pump (CSP).  

 

 
Figure 1 Concept of reinforcement learning. 

2. Methodology 
 

2.1. MAAP dataset generation 

 

In the scenario of ELAP-LOUHS, most of the safety 

feature components such as high-pressure safety 

injection, low-pressure safety injection, motor driven 
auxiliary feedwater pump are unavailable. Despite the 

limited components available, two key mitigation 

strategies are for keeping the integrity of the containment 

building. The two mitigation strategies, TDAFW and 

CSP, observed in this study operates under specific 

circumstances such as the duration of the battery lifespan 

or availability of external mobility pump that could 

support the containment spray system (CSS). The battery 

duration is known to range from 4 hours to 11 hours and 

the external mobility pump is assumed to be ready at 

least 2 hours after the entrance of severe accident 

management guidelines (SAMG). In addition, CSS 
duration rely on the remaining amount of recirculation 

water storage tank (RWST). Therefore, the various 

conditions ranging from 10% available to 100% 

available are given to create the scenarios. The 

conditions assumed in this study are demonstrated in 

table 1. 

 

Table 1. Various conditions for the accident 

Variable Range Operation 

TDAFW battery 

duration 
4 ~ 11 hr 

After the 

accident 

CSP operating 

time 
2 ~ 30 hr 

After SAMG 

entrance 

RWST water level 

(portion) 
10 ~ 100 %  

 
With respect to three of the key conditions, 2320 

scenarios are created. The number of scenarios were 

obtained by 8 possible cases in battery, 29 in CSP 

entrance timing, and 10 cases in RWST water level 

availability. With these 2320, datasets were created to 

train the surrogate model. The surrogate model utilized 
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in this study is the long-short term memory (LSTM). The 

concept of establishing the surrogate model is depicted 

in figure 2. The thermal-hydraulic variable goes through 

LSTM block whereas signal and state variable go 

through embedding block. The three variables are 
concatenated and passed on to LSTM to predict new 

thermal-hydraulic variables. Figure 3 demonstrates the 

key concept of this study by providing 29 cases of 

scenarios of 11 hours of TDAFW with RWST fully 

available. The example emphasizes the importance of 

CSP actuation timing by exhibiting both containment 

failure case and successfully mitigated case. The 

manually found optimize timing is found to be the best 

before 21 hours. By training RL with structured 

compensation system, finding the optimized timing of 

CSP timing is the key goal of the RL application.  

 

 
Figure 2 Establishing surrogate model 

 
 

 
 

Figure 3 Pressure (normalized) behavior of 29 scenarios 

 

 

2.2. Reinforcement learning 
 

RL is an AI technique in which an agent interacts 

with an environment to implement a specific strategy [5]. 

Within the environment, the agent takes actions in order 

to maximize its cumulative reward. Hence, the essence 

of RL lies in the constructing well-designed reward 

system. The agent learns through Markov Decision 

Process (MDP), where it repeatedly selects actions and 

evaluates the outcomes through trial and error. The 

decision-making mechanism that maps states to actions 

is called policy. By optimizing the policy the agent 

improves its performance in achieving the defined 

objectives. The cumulative measure of success is 

referred as the value. Accordingly, RL approaches can be 
divided into value-based and policy-based method in 

broad sight. 

In this study, for the goal is on determining the timing 

of mitigation strategies, policy-based RL methods are 

considered. Specifically, two models are compared to 

present the performance: Advantage Actor-critic (A2C) 

and Proximal Policy Optimization (PPO). In both models, 

the actor-critic architecture is utilized. The key 

difference between the two model lies in how the policy 

update is controlled by additional function. 

 

2.3. A2C  
 

The actor-critic framework combines the strengths of 

policy-based and value-based RL. The actor learns a 

policy that maps states to actions while the critic learns a 

value function that estimates the expected return of a 

state under the current policy. The critic thereby 

evaluates the quality of the actions and provides 

feedback.  In A2C, the actor updates its policy directly 

based on the critic’s evaluation (advantage function). 

The advantage function measures how much better (or 

worse) an action performs compared to the average. 
However, this update can be unstable due to unlimited 

policy changes may occur between iterations, leading to 

unstable calculation. 

 

2.4. PPO 

 

PPO is a state-of-the-art optimization method that 

improves upon A2C by introducing, clipping mechanism 

during the policy update. The clipping mechanism is 

retrieved by calculating probability ratio of the old and 

new policy. Restricting the probability ratio to the 

predefined threshold would stabilize the new policy 
calculation. As a result, PPO prevents excessively large 

policy updates, by constraining policy updates within 

this “trust region” ensuring that the actor does not deviate 

dramatically from the previous policy. In addition, PPO 

supports efficient multi-process training and balances 

exploration and exploitation by allowing moderate 

variations in updates. As a result, PPO achieves more 

stable convergence and higher sample efficiency 

compared to A2C, expecting it to be more suitable for 

complex environments. 

 
2.5. Reward systems 

 

The reward system is the key element of this study. 

Depending on how the reward system is structured, the 

RL could find the optimizing results. The key elements 

that need to be regarded in this study are demonstrated in 

Table 2. The main target of this scenario is to keep the 

integrity of the containment building. Therefore, when 

the scenario is done and the containment is not failed, the 
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huge reward is provided. But when the containment is 

failed, the same amount of disadvantage is given in 

negative sign. Since the goal is to find the best CSP 

turning timing, the reward is given to the CSP operating 

point as well. In order to find the optimizing time, the 
reward is provided as the steps are as late as possible. The 

maximum time step possible in this scenario is 289 (72 

hours of calculation divided in 15 minutes).  

 

Table 2. Reward system for RL 

Condition Reward 

Step number +1 for each step 

CSP turn on  + 120 

Containment failure -200 

Step > 289 and Containment 

integrity kept 
+200 

 
3. Result and Analysis 

 

The RL results are compared in this section. Under the 

same reward system, the comparison between A2C and 

PPO highlights the role of the clipping mechanism. Both 

models were trained for 20,000 episodes, and their 

cumulative rewards were evaluated to assess the 

performance differences in Fig 4. 

 
Figure 4 Comparison of rewards between A2C and PPO  

 

Table 3. Key performance indices for A2C and PPO 

Key performance index A2C PPO 

Final Converged Reward 87.09 75.04 

Learning Stability 

(Standard Deviation) 
252.62 224.30 

 

From figure 4, A2C exhibit faster exploration of the 

reward space and reaches higher peak rewards compared 
to PPO. The learning stability metric in Table 3 indicates 

that A2C explores a wider range of possibilities, whereas 

PPO progresses more conservatively within a stable 

region. For this study, where the primary goal is to 

identify the optimal timing for CSP operation, the faster 

convergence of A2C provides an advantage in seeking 

the solution efficiently. PPO, on the other hand, 

demonstrates slower but steadier improvements, 

reflecting its conservative update strategy due to the 

clipping mechanism.  

4. Conclusion 
 

In this study, two policy-based reinforcement learning 

methods, A2C and PPO, were applied to the problem of 

determining the appropriate timing for CSP operation 
under severe accident conditions. The results showed 

that A2C achieved faster exploration and higher 

converged rewards, making it more suitable for scenarios 

requiring rapid decision-making. PPO, although slower, 

demonstrated more stable learning behavior, reflecting 

its strength in long-term reliability. 

The key findings from this study suggests that: 

• A2C is advantageous when quick adaptation and 

solution retrieval are important. 

• PPO may be more appropriate in common when 

application require stability and robustness against 
overfitting. 

Overall, this study demonstrates the feasibility of 

applying RL to nuclear power plants severe accident 

mitigation strategies. Comparing two widely used 

algorithms highlights how difference policy update 

mechanisms can influence training outcomes. For future 

work, the representative value-based RL method, Deep 

Q-Network (DQN), will be investigated. A comparison 

between DQN and the policy-based methods (either PPO 

or A2C) is expected to provide further insights into the 

relative suitability of value based and policy-based 

approaches for predicting mitigation strategies under 
severe accident conditions. 
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