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1. Introduction

The feasibility of applying artificial intelligence (Al)
to the operation of nuclear power plants under severe
accidents has been investigated with various types of
models. Leveraging time-series observations of thermal-
hydraulic variables obtained from the main control room,
various neural-network models have been developed for
state prediction[1,2]. With the development of Al models,
forecasting the behavior of thermal-hydraulic variables
has improved. With the precise predictions on the
nuclear power plant status, valid result of the mitigation
strategy enables the assessment of mitigation strategies.

Regarding the appropriate timing of the mitigation
strategy, various trial must be conducted with simulation.
In previous studies, establishing surrogate model with
data acquired from the system code brings adequate
agreements for constructing environment for the
reinforcement learning (RL). With surrogate model
developed, time consumption on the system codes such
as MELCOR or MAAP could be saved. The prediction
on the status of containment building integrity or the
reactor pressure vessel integrity could be achieved with
surrogate  model. The surrogate model provides
compatible environment for the RL training [3].

In this study, one of the stress test scenarios conducted
in Hanul 3,4 was assessed [4]. The scenario is extended
loss of alternate power (ELAP) and loss of ultimate heat
sink (LOUHS). In this scenario, the only available safety
components are, turbine driven auxiliary feedwater
pump (TDAFW) and containment spray pump (CSP).
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Figure 1 Concept of reinforcement learning.

2. Methodology
2.1. MAAP dataset generation

In the scenario of ELAP-LOUHS, most of the safety
feature components such as high-pressure safety
injection, low-pressure safety injection, motor driven
auxiliary feedwater pump are unavailable. Despite the
limited components available, two key mitigation
strategies are for keeping the integrity of the containment
building. The two mitigation strategies, TDAFW and
CSP, observed in this study operates under specific
circumstances such as the duration of the battery lifespan
or availability of external mobility pump that could
support the containment spray system (CSS). The battery
duration is known to range from 4 hours to 11 hours and
the external mobility pump is assumed to be ready at
least 2 hours after the entrance of severe accident
management guidelines (SAMG). In addition, CSS
duration rely on the remaining amount of recirculation
water storage tank (RWST). Therefore, the various
conditions ranging from 10% available to 100%
available are given to create the scenarios. The
conditions assumed in this study are demonstrated in
table 1.

Table 1. Various conditions for the accident

Variable Range Operation
TDAFW battery A~11hr After the
duration accident
CSP operating 2 ~30hr After SAMG
time entrance
RWST water level 10 ~ 100 %
(portion)

With respect to three of the key conditions, 2320
scenarios are created. The number of scenarios were
obtained by 8 possible cases in battery, 29 in CSP
entrance timing, and 10 cases in RWST water level
availability. With these 2320, datasets were created to
train the surrogate model. The surrogate model utilized
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in this study is the long-short term memory (LSTM). The
concept of establishing the surrogate model is depicted
in figure 2. The thermal-hydraulic variable goes through
LSTM block whereas signal and state variable go
through embedding block. The three variables are
concatenated and passed on to LSTM to predict new
thermal-hydraulic variables. Figure 3 demonstrates the
key concept of this study by providing 29 cases of
scenarios of 11 hours of TDAFW with RWST fully
available. The example emphasizes the importance of
CSP actuation timing by exhibiting both containment
failure case and successfully mitigated case. The
manually found optimize timing is found to be the best
before 21 hours. By training RL with structured
compensation system, finding the optimized timing of
CSP timing is the key goal of the RL application.
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Figure 2 Establishing surrogate model
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Figure 3 Pressure (normalized) behavior of 29 scenarios

2.2. Reinforcement learning

RL is an Al technique in which an agent interacts
with an environment to implement a specific strategy [5].
Within the environment, the agent takes actions in order
to maximize its cumulative reward. Hence, the essence
of RL lies in the constructing well-designed reward
system. The agent learns through Markov Decision
Process (MDP), where it repeatedly selects actions and
evaluates the outcomes through trial and error. The

decision-making mechanism that maps states to actions
is called policy. By optimizing the policy the agent
improves its performance in achieving the defined
objectives. The cumulative measure of success is
referred as the value. Accordingly, RL approaches can be
divided into value-based and policy-based method in
broad sight.

In this study, for the goal is on determining the timing
of mitigation strategies, policy-based RL methods are
considered. Specifically, two models are compared to
present the performance: Advantage Actor-critic (A2C)
and Proximal Policy Optimization (PPO). In both models,
the actor-critic architecture is utilized. The key
difference between the two model lies in how the policy
update is controlled by additional function.

2.3. A2C

The actor-critic framework combines the strengths of
policy-based and value-based RL. The actor learns a
policy that maps states to actions while the critic learns a
value function that estimates the expected return of a
state under the current policy. The critic thereby
evaluates the quality of the actions and provides
feedback. In A2C, the actor updates its policy directly
based on the critic’s evaluation (advantage function).
The advantage function measures how much better (or
worse) an action performs compared to the average.
However, this update can be unstable due to unlimited
policy changes may occur between iterations, leading to
unstable calculation.

2.4. PPO

PPO is a state-of-the-art optimization method that
improves upon A2C by introducing, clipping mechanism
during the policy update. The clipping mechanism is
retrieved by calculating probability ratio of the old and
new policy. Restricting the probability ratio to the
predefined threshold would stabilize the new policy
calculation. As a result, PPO prevents excessively large
policy updates, by constraining policy updates within
this “trust region” ensuring that the actor does not deviate
dramatically from the previous policy. In addition, PPO
supports efficient multi-process training and balances
exploration and exploitation by allowing moderate
variations in updates. As a result, PPO achieves more
stable convergence and higher sample efficiency
compared to A2C, expecting it to be more suitable for
complex environments.

2.5. Reward systems

The reward system is the key element of this study.
Depending on how the reward system is structured, the
RL could find the optimizing results. The key elements
that need to be regarded in this study are demonstrated in
Table 2. The main target of this scenario is to keep the
integrity of the containment building. Therefore, when
the scenario is done and the containment is not failed, the
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huge reward is provided. But when the containment is
failed, the same amount of disadvantage is given in
negative sign. Since the goal is to find the best CSP
turning timing, the reward is given to the CSP operating
point as well. In order to find the optimizing time, the
reward is provided as the steps are as late as possible. The
maximum time step possible in this scenario is 289 (72
hours of calculation divided in 15 minutes).

Table 2. Reward system for RL

Condition Reward
Step number +1 for each step
CSP turnon + 120
Containment failure -200
Step > 289 and Containment +200
integrity kept

3. Result and Analysis

The RL results are compared in this section. Under the
same reward system, the comparison between A2C and
PPO highlights the role of the clipping mechanism. Both
models were trained for 20,000 episodes, and their
cumulative rewards were evaluated to assess the
performance differences in Fig 4.
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Figure 4 Comparison of rewards between A2C and PPO

Table 3. Key performance indices for A2C and PPO

Key performance index A2C PPO

Final Converged Reward | 87.09 75.04

Learning Stability

252.62 224.30

(Standard Deviation)

From figure 4, A2C exhibit faster exploration of the
reward space and reaches higher peak rewards compared
to PPO. The learning stability metric in Table 3 indicates
that A2C explores a wider range of possibilities, whereas
PPO progresses more conservatively within a stable
region. For this study, where the primary goal is to
identify the optimal timing for CSP operation, the faster
convergence of A2C provides an advantage in seeking
the solution efficiently. PPO, on the other hand,
demonstrates slower but steadier improvements,
reflecting its conservative update strategy due to the
clipping mechanism.

4. Conclusion

In this study, two policy-based reinforcement learning
methods, A2C and PPO, were applied to the problem of
determining the appropriate timing for CSP operation
under severe accident conditions. The results showed
that A2C achieved faster exploration and higher
converged rewards, making it more suitable for scenarios
requiring rapid decision-making. PPO, although slower,
demonstrated more stable learning behavior, reflecting
its strength in long-term reliability.

The key findings from this study suggests that:

e A2C is advantageous when quick adaptation and

solution retrieval are important.

e PPO may be more appropriate in common when
application require stability and robustness against
overfitting.

Overall, this study demonstrates the feasibility of
applying RL to nuclear power plants severe accident
mitigation strategies. Comparing two widely used
algorithms highlights how difference policy update
mechanisms can influence training outcomes. For future
work, the representative value-based RL method, Deep
Q-Network (DQN), will be investigated. A comparison
between DQN and the policy-based methods (either PPO
or A2C) is expected to provide further insights into the
relative suitability of value based and policy-based
approaches for predicting mitigation strategies under
severe accident conditions.
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