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1. Introduction

The safety monitoring systems in nuclear power plants
(NPPs) must detect mechanical impacts and structural
anomalies at an early stage to prevent equipment failures
and operational interruptions. Piezoelectric sensors,
which convert mechanical impact into electrical signals,
are therefore widely utilized in various systems such as
vibration monitoring, seismic response analysis, and
leakage detection [1]. Among these, the loose parts
monitoring system (LPMS) is a representative system
designed to detect metallic debris or structural fragments
inside the reactor, typically relying on threshold-based
logic to determine impact events [2].

However, in current industrial applications,
piezoelectric sensor systems often generate high-
amplitude signals in response to non-impact events such
as cable vibrations or circuit anomalies, resulting in false
alarms and operator confusion [3,4]. To address this
issue, this study proposes a two-stage classification
framework that integrates tree-based models such as
eXtreme Gradient Boosting (XGBoost) and Random
Forest [5,6] with feature extraction techniques like Short-
Time Fourier Transform (STFT) and Continuous
Wavelet Transform (CWT) [7,8]. The proposed method
aims to distinguish between four signal classes: normal,
impact, cable vibration, and circuit fault and to localize
fault causes (charge amplifier vs. low-pass filter). The
goal is to improve the accuracy of signal interpretation in
LPMS and enhance the overall reliability of plant
operations.

2. Data Collection

The reliability of machine learning models heavily
depends on the quality of training data. However,
collecting abnormal signal data, such as those caused by
circuit faults, is challenging in real-world systems due to
safety and operational constraints. To overcome this
limitation, this study generates training data for fault
signals using PSPICE circuit simulations, enabling the
controlled acquisition of training data. Section 2.1
describes the PSPICE circuit modeling process, while
Section 2.2 outlines the data collection methodology and
characteristics of the generated signals.

2.1. Circuit Modeling

To replicate the signal processing of a piezoelectric
sensor system, a nominal-state circuit was modeled using
OrCAD Capture CIS. The circuit consists of a charge
amplifier and a low-pass filter. In LPMS, the
piezoelectric sensor system is typically composed of a
charge amplifier that amplifies the measured charge and
a low-pass filter that removes high-frequency noise.
Considering this configuration, the circuit was modeled
as shown in Figure 1.
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Figure 2. Data achieved from red and green probes (appear in
Figure 1).

In the circuit, the charge output of the piezoelectric
sensor was approximated as a voltage input, which is
valid under high-impedance conditions since q = Cv.
This approach avoids adding extra capacitance at the
input stage, thereby simplifying the calculation of the
filter's cutoff frequency and facilitating analysis. Noise
injection was implemented by summing two voltage
sources, and the filter was designed using a Sallen—Key
topology.

Circuit parameters were adjusted to match the
frequency, period, and amplitude of waveforms
measured at the actual sensor terminal. As a result, the
simulation generated a nominal waveform with a
frequency of 60.10 Hz, a period of 16.638 ms, and an
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amplitude of 0.1733 V. These parameters were tuned
based on analytical equations for voltage gain and cutoff
frequency.

As shown in Figures 3 and 4, the simulated signals
closely resemble those collected from the actual device.
To quantify similarity, signals were z-scored, coarsely
aligned by cross-correlation, and finely phase-aligned at
the dominant frequency, then evaluated with Dynamic
Time  Warping (DTW,  path-length-normalized
alignment cost under non-linear warps, lower is better)
and Time-Delay Embedding (TDE; Takens embedding
with m =4, t from the first non-positive autocorrelation;
similarity via the symmetric Hausdorff distance, lower is
better).

Using normal baselines, acceptance thresholds were
set to the 90th percentile of the within-class distributions
(P90, N =32): Oprw = 3.37 x 103 and O1pe = 0.912. On
a representative pair, the normalized DTW cost was 9.11
x 10™* and the TDE Hausdorff distance was 0.480, both
below their respective thresholds (Table I), indicating
that the PSPICE-generated waveforms are sufficiently
close to real measurements and are appropriate for
training and evaluation.
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Figure 3. Voltage waveform overlap of real and gen signal.
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Figure 4. TDE scatter (m=4, 1=20).

Table I. DTW/TDE similarity and acceptance thresholds.

Metric Value Acc.ep t.a nee
criterion
. _, <3.37x10°°
Normalized DTW cost  9.11x10 (P90, N=32)
TDE symmetric Hausdorff 0480 <0912
(m=4, 1 via ACF) ' (P90, N=32)

2.2. Waveform Generation

To train and evaluate the classification model, 200
samples of 300 ms waveform data were generated for

four scenarios: normal, impact, cable vibration, and
circuit fault. Simulations were conducted using PSPICE
and OrCAD Capture CIS, and some signals were
synthesized through pattern-based post-processing.

Table II. 1st-Stage Class distribution.
Ist Stage Class Sample Count

Normal 10
Impact 10
Cable Vibration 10
Circuit Fault 170
Total 200

Normal signals were extracted from the analog circuit
designed in Section 2.1, with £5% noise added to
simulate the variability observed in real measurements.
Impact signals were generated by adding a VSIN source
to the normal circuit output via a sum component. The
VSIN source was configured with a 1 ms time delay (TD)
to replicate the initial onset observed in actual impact
events and had the following parameters: damping factor
(DF) = 20, amplitude (VAMPL) = 0.618 V, frequency
(FREQ) = 1000 Hz, and AC magnitude = 5. This
configuration produced a pronounced high-amplitude
transient (~600 mV) that is substantially higher than the
nominal signal level, followed by a decaying oscillation
characteristic of real impact-induced responses.
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Figure 5. Impact signal voltage waveform.

Since cable-vibration waveforms are not readily
reproducible in PSPICE, we emulated them by
superimposing short, spike-like transients on normal
signals. Each spike was randomly positioned and lasted
for 30 samples, with amplitudes ranging from 0.02 to
0.07. The small amplitude was deliberately chosen to
make class discrimination more challenging. The design
reflects the characteristics commonly observed in real-
world cable vibration scenarios.
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Figure 6. Cable vibration signal voltage waveform.

Circuit fault signals were generated via PSPICE
simulations by defining 17 distinct fault classes. For each
class, 10 representative waveforms were produced.
Introducing 5% variations on noise and fault values, total
170 samples were collected. Depending on the fault
location, the signals were categorized into two groups:
charge amplifier-related and filter-related faults. A
detailed summary of these fault types is provided in
Table III.

Table III. 2nd-stage fault classes and parameters.

Class Sub Sample  Baseline Fault
Label Counts value value
Charge R1-high 10 10 kQ 30 kQ
Amplifier | R1-low 10 10 kQ 100 Q
R1-short 10 10 kQ —
R1-open 10 10 kQ —
R2-short 10 1 kQ —
Noise Cl-high 10 50 nF 500 nF
Filter Cl-low 10 50 nF 5nF
Cl-short 10 50 nF —
Cl-open 10 50 nF —
C2-high 10 1 nF 100 nF
C2-low 10 1 nF 0.1 nF
C2-short 10 1 nF —
C2-open 10 1 nF —
R4-high 10 3kQ 30 kQ
R4-low 10 3kQ 100 Q
R4-short 10 3kQ —
R4-open 10 3kQ —

3. Signal Classification Framework

3.1. Overview of Two-Stage Signal Classification
Framework

A two-stage hierarchical classification framework was
developed using tree-based machine learning methods to
process sensor signals. In each stage, the one-
dimensional time-series signals are transformed into
two-dimensional time—frequency representations and
then flattened into fixed-length vectors for input to the
classifier.

In the first stage, STFT-derived features are fed into
an XGBoost model to classify the signals into four
categories: normal, cable vibration, impact, and circuit

fault. Only signals identified as circuit faults proceed to
the second stage.

In the second stage, CWT is applied to extract more
fine-grained features, which are then classified by a
Random Forest model into either charge amplifier faults
or noise filter faults. This two-stage design reduces false
alarms in the first stage by improving discrimination
between impact and non-impact events, and specifies the
cause of circuit faults in the second stage, thereby
enhancing the reliability of signal interpretation in
piezoelectric sensor systems. XGBoost and Random
Forest—both tree-based learning models—offer robust
performance even with relatively small training datasets.
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Figure 7. Classification schema.

3.2. First-stage Classification

In the first stage, the raw time-series signals collected
from the sensors are processed using STFT to extract
time—frequency domain features. STFT is well-suited for
capturing changes in frequency content over short time
windows, enabling precise alignment of transient and
stationary components.

The STFT parameters are summarized in Table IV.
The frequency range was limited to components below
300 Hz to focus on the dominant energy band of the
signals. The resulting spectra were log-scaled and
normalized, and for each frequency bin, statistical
features—mean, standard deviation, maximum,
minimum, skewness, and kurtosis—were calculated. The
resulting feature vector was zero-padded to a fixed length
of 3,000 before being passed to the classifier.

The extracted features were classified using XGBoost,
a gradient boosting—based ensemble method known for
its strong generalization ability and capacity to model
complex, nonlinear decision boundaries. The
hyperparameters used for XGBoost are listed in Table V.
This stage outputs one of four classes: normal, cable
vibration, impact, or circuit fault. Only signals labeled as
circuit faults are passed to the second stage.
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Table IV. STFT parameter settings.
Value

Sampling 1600
frequency Hz

Parameter Description

Acquisition rate of raw
signals
Number of samples per

Window length 256 .
window

Overlapping samples

Overlap 128 between windows
Frequency <300 Retained frequency
range Hz components

Table V. XGBoost parameter settings.

Parameter Value Note
use_label encoder False Disable deprecated label
encoder
. Multiclass log loss
eval metric  mlogloss .
- evaluation
Random_state 42 Reproducibility

Others Default XGBoost default settings

3.3. Second-stage Classification

The second stage further analyzes the signals
classified as circuit faults in order to identify the
underlying cause. CWT is applied to these signals to
extract time—frequency features with variable resolution,
enabling precise characterization of both transient and
noise-related patterns. This makes CWT effective in
distinguishing between faults originating from the charge
amplifier and those from the noise filter.

The CWT parameters are summarized in Table VI. The
wavelet transform was performed using the Morlet
mother wavelet with integer scales ranging from 1 to 30,
providing coverage of both fine and coarse resolutions.
For each scale, the mean, standard deviation, maximum,
and minimum of the wavelet coefficients were calculated,
and the results were flattened into a one-dimensional
feature vector.

These features were then classified using a Random
Forest model, an ensemble of decision trees that
improves classification accuracy through majority voting.
Random Forest is robust to noise and performs well even
on relatively small datasets, making it suitable for the
conditions of this study. The hyperparameters used for
the Random Forest classifier are listed in Table VII.

Table VI. CWT parameter settings.

Parameter Value Description
Mother Morlet Wavelet type used for
wavelet (morl) decomposition

Integer scales for multi-

Scale range 130 resolution analysis

Extracted from wavelet
coefficients

Mean, Std,
Max, Min

Statistical
features

Table VII. Randomforest parameter settings.

Parameter Value Note
Random_state 42 Reproducibility
Others Default scikit-learn

default settings

4. Training & Test Results
4.1. Training

To assess the learning behavior of the proposed
classifiers, this study utilized loss curves and t-SNE
embeddings. The dataset was stratified and split into 80%
training and 20% testing. As shown in Figure 8§, the
validation loss of the XGBoost model converged to
below 0.01 around boosting round 60, indicating stable
training. For qualitative visualization, the feature vectors
used by the Random Forest stage were projected using t-
SNE (Figure 9). The clusters may appear diffuse due to
the aggregation of 17 fault subclasses into two top-level
categories, but are well separated at the subclass level,
indicating effective model learning.
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Figure 8. XGBoost training and validation loss.
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Figure 9. Randomforest t-SNE projection of features
(aggregated into charge-amplifier vs. noise-filter groups).

4.2. Test Results

The two-stage classification framework was evaluated
with STFT features and an XGBoost classifier in the first
stage, and CWT features and a Random Forest classifier
in the second stage. Because the held-out test set is class-
imbalanced (e.g., some first-stage classes have only two
samples), performance is summarized using overall
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accuracy together with macro- and weighted-averaged
precision/recall/F1.

At the First stage (STFT + XGBoost), the classifier
correctly classified 40 out of 40 samples (100.0%) on the
test set, with macro F1 = 1.00 and weighted F1 = 1.00
(Table VIII). Notably, impact was cleanly separated from
circuit fault, a pair often confounded in threshold-based
LPMS pipelines. On the Second stage (CWT + Random
Forest), the classifier correctly classified 34 out of 34
samples (100.0%), with macro F1 = 1.00 and weighted
F1 = 1.00 (Table IX), distinguishing charge-amplifier
from noise-filter faults without error.

To compare classification performance, a 1D-CNN
was also trained on raw waveforms (no explicit time—
frequency features). The model achieved 90% accuracy
at the first stage (macro F1 = 0.49, weighted F1 = 0.85)
and 94% accuracy at the second stage (macro F1 =0.93,
weighted F1 = 0.94) (Tables XI-XII). For validation,
Stage-2 performance of the CNN baseline was computed
on a fixed set of 24 ground-truth circuit-fault samples,
bypassing the usual routing of only Stage-1 “circuit-fault”
predictions. The first-stage degradation is concentrated
in small-support classes (Normal, Cable Vibration; n = 2
each). These results show that a two-stage classification
framework with STFT/CWT features and tree-based
models outperform an end-to-end CNN under limited
and imbalanced data—improving accuracy by +10
percentage points in Stage 1 (100% vs 90%) and +6
points in Stage 2 (100% vs 94%), with large gains in
macro F1 for small-support classes.

Table VIII. 1st-stage classifier results.

Precision Recall F1-  support
score

Normal 1.00 1.00 1.00 2

Impact 1.00 1.00 1.00 2

Cable 1.00 1.00 1.00 2

Vibration

Circuit 1.00 1.00 1.00 34
Fault

Accuracy 1.00 40

Macro 1.00 1.00 1.00 40
avg

Weighted 1.00 1.00  1.00 40
avg

Table IX. 2nd-stage classifier results.
Precision Recall F1- support

score

Charge 1.00 1.00  1.00 10
Amplifier

Noise 1.00 1.00  1.00 24

Filter
Accuracy 1.00 34
Macro 1.00 1.00  1.00 34
avg

Weighted 1.00 1.00  1.00 34
avg

Table X. 1D-CNN architecture used (both stages).

Output
Laver Details channels / size
4 (for input length
3000)
in=1, out=16,
%’elivlljd - kernel=64, 16 x 184
stride=16, pad=0
MaxPoolld  kernel=4, stride=4 16 x 46
in=16, out=32,
(i{’erivlljd " kernel=16, stride=4, 32x8
pad=0
MaxPoolld  kernel=2, stride=2 32 x4
in=32, out=64,
CI{’GIE’IIJd T kemel=4, stride=1, 64 % 1
pad=0
Flatten — 64
]li:fér * 64 — 128 128
Dropout p=0.5 128

Stage-1: 128 — 4
classes; Stage-2: 128 —
— 2 classes

Linear
(output)

Table XI. Ist-stage 1D-CNN classification report.

Precision Recall F1-  support

score
Normal 0.00 0.00  0.00 2
Impact 1.00 1.00 1.00 2
Cable 0.00 0.00  0.00 2
Vibration
Circuit 0.89 1.00  0.94 34
Fault
Accuracy 0.90 40
Macro 0.47 0.50 0.49 40
avg
Weighted 0.81 090 0.85 40
avg

Table XII. 2nd-stage 1D-CNN classification report.

Precision Recall F1-  support

score

Charge 0.83 1.00 091 10
Amplifier

Noise 1.00 092  0.96 24

Filter
Accuracy 0.94 34
Macro 0.92 096 093 34
avg

Weighted 0.95 094 094 34
avg
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5. Conclusion

This work presents a two-stage classification
framework to improve piezoelectric signal interpretation
accuracy in nuclear power-plant monitoring, with a focus
on LPMS. A PSPICE-based reconstruction of the analog
front-end enabled high-quality data generation for both
normal and abnormal scenarios. STFT and CWT time—
frequency features were extracted and fed to XGBoost
(first stage) and Random Forest (second stage),
respectively. On a held-out test set, the framework
classified 40/40 samples (100%) in Stage 1 and 34/34
(100%) within the circuit-fault subset in Stage 2, while a
ID-CNN trained on raw waveforms reached 90% and
94%, respectively. These findings clearly indicate the
superiority of tree-based models with engineered time—
frequency features over an end-to-end CNN under small
and imbalanced data, reducing false alarms (impact vs
non-impact) and improving diagnostic specificity
(charge-amplifier vs noise-filter faults). This work is
applicable to safety-critical piezoelectric sensor systems,
including integrated small modular reactors (i-SMRs),
where accurate fault -classification supports safer
operation. Expanding this study, the authors plan to
integrate field measurements, explore hybrid pipelines
(tree-based + deep backbones), and broaden robustness
studies across noise/operating conditions.
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