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1. Introduction 
 

The safety monitoring systems in nuclear power plants 
(NPPs) must detect mechanical impacts and structural 
anomalies at an early stage to prevent equipment failures 
and operational interruptions. Piezoelectric sensors, 
which convert mechanical impact into electrical signals, 
are therefore widely utilized in various systems such as 
vibration monitoring, seismic response analysis, and 
leakage detection [1]. Among these, the loose parts 
monitoring system (LPMS) is a representative system 
designed to detect metallic debris or structural fragments 
inside the reactor, typically relying on threshold-based 
logic to determine impact events [2].  

However, in current industrial applications, 
piezoelectric sensor systems often generate high-
amplitude signals in response to non-impact events such 
as cable vibrations or circuit anomalies, resulting in false 
alarms and operator confusion [3,4]. To address this 
issue, this study proposes a two-stage classification 
framework that integrates tree-based models such as 
eXtreme Gradient Boosting (XGBoost) and Random 
Forest [5,6] with feature extraction techniques like Short-
Time Fourier Transform (STFT) and Continuous 
Wavelet Transform (CWT) [7,8]. The proposed method 
aims to distinguish between four signal classes: normal, 
impact, cable vibration, and circuit fault and to localize 
fault causes (charge amplifier vs. low-pass filter). The 
goal is to improve the accuracy of signal interpretation in 
LPMS and enhance the overall reliability of plant 
operations. 

2. Data Collection 
 

The reliability of machine learning models heavily 
depends on the quality of training data. However, 
collecting abnormal signal data, such as those caused by 
circuit faults, is challenging in real-world systems due to 
safety and operational constraints. To overcome this 
limitation, this study generates training data for fault 
signals using PSPICE circuit simulations, enabling the 
controlled acquisition of training data. Section 2.1 
describes the PSPICE circuit modeling process, while 
Section 2.2 outlines the data collection methodology and 
characteristics of the generated signals. 
  
 
 

2.1. Circuit Modeling 
 

To replicate the signal processing of a piezoelectric 
sensor system, a nominal-state circuit was modeled using 
OrCAD Capture CIS. The circuit consists of a charge 
amplifier and a low-pass filter. In LPMS, the 
piezoelectric sensor system is typically composed of a 
charge amplifier that amplifies the measured charge and 
a low-pass filter that removes high-frequency noise. 
Considering this configuration, the circuit was modeled 
as shown in Figure 1. 

 

 
Figure 1. Design of normal circuit. 

 

 
Figure 2. Data achieved from red and green probes (appear in 

Figure 1). 
 
In the circuit, the charge output of the piezoelectric 

sensor was approximated as a voltage input, which is 
valid under high-impedance conditions since 𝑞𝑞 = 𝐶𝐶𝐶𝐶. 
This approach avoids adding extra capacitance at the 
input stage, thereby simplifying the calculation of the 
filter's cutoff frequency and facilitating analysis. Noise 
injection was implemented by summing two voltage 
sources, and the filter was designed using a Sallen–Key 
topology. 

Circuit parameters were adjusted to match the 
frequency, period, and amplitude of waveforms 
measured at the actual sensor terminal. As a result, the 
simulation generated a nominal waveform with a 
frequency of 60.10 Hz, a period of 16.638 ms, and an 
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amplitude of 0.1733 V. These parameters were tuned 
based on analytical equations for voltage gain and cutoff 
frequency.  

As shown in Figures 3 and 4, the simulated signals 
closely resemble those collected from the actual device. 
To quantify similarity, signals were z-scored, coarsely 
aligned by cross-correlation, and finely phase-aligned at 
the dominant frequency, then evaluated with Dynamic 
Time Warping (DTW; path-length–normalized 
alignment cost under non-linear warps, lower is better) 
and Time-Delay Embedding (TDE; Takens embedding 
with 𝑚𝑚 = 4, 𝜏𝜏 from the first non-positive autocorrelation; 
similarity via the symmetric Hausdorff distance, lower is 
better). 

 
Using normal baselines, acceptance thresholds were 

set to the 90th percentile of the within-class distributions 
(P90, 𝑁𝑁 = 32): 𝜃𝜃DTW = 3.37 × 10 − 3 and 𝜃𝜃TDE = 0.912. On 
a representative pair, the normalized DTW cost was 9.11 
× 10− 4 and the TDE Hausdorff distance was 0.480, both 
below their respective thresholds (Table Ⅰ), indicating 
that the PSPICE-generated waveforms are sufficiently 
close to real measurements and are appropriate for 
training and evaluation. 
 

 
Figure 3. Voltage waveform overlap of real and gen signal. 

 

 
Figure 4. TDE scatter (m=4, τ=20). 

 
Table I. DTW/TDE similarity and acceptance thresholds. 

Metric Value  Acceptance 
criterion 

Normalized DTW cost 9.11×10⁻⁴ ≤ 3.37×10⁻³ 
(P90, N=32) 

TDE symmetric Hausdorff 
(m=4, τ via ACF) 0.480 ≤ 0.912 

(P90, N=32) 

 
2.2. Waveform Generation 
 

To train and evaluate the classification model, 200 
samples of 300 ms waveform data were generated for 

four scenarios: normal, impact, cable vibration, and 
circuit fault. Simulations were conducted using PSPICE 
and OrCAD Capture CIS, and some signals were 
synthesized through pattern-based post-processing.  

 
Table Ⅱ. 1st-Stage Class distribution. 

1st Stage Class Sample Count 
Normal 10 
Impact 10 

Cable Vibration 10 
Circuit Fault 170 

Total 200 
 
Normal signals were extracted from the analog circuit 

designed in Section 2.1, with ±5% noise added to 
simulate the variability observed in real measurements.  
Impact signals were generated by adding a VSIN source 
to the normal circuit output via a sum component. The 
VSIN source was configured with a 1 ms time delay (TD) 
to replicate the initial onset observed in actual impact 
events and had the following parameters: damping factor 
(DF) = 20, amplitude (VAMPL) = 0.618 V, frequency 
(FREQ) = 1000 Hz, and AC magnitude = 5. This 
configuration produced a pronounced high-amplitude 
transient (~600 mV) that is substantially higher than the 
nominal signal level, followed by a decaying oscillation 
characteristic of real impact-induced responses. 

 

 
Figure 5. Impact signal voltage waveform. 

 
Since cable-vibration waveforms are not readily 

reproducible in PSPICE, we emulated them by 
superimposing short, spike-like transients on normal 
signals. Each spike was randomly positioned and lasted 
for 30 samples, with amplitudes ranging from 0.02 to 
0.07. The small amplitude was deliberately chosen to 
make class discrimination more challenging. The design 
reflects the characteristics commonly observed in real-
world cable vibration scenarios. 
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Figure 6. Cable vibration signal voltage waveform. 

 
Circuit fault signals were generated via PSPICE 

simulations by defining 17 distinct fault classes. For each 
class, 10 representative waveforms were produced. 
Introducing 5% variations on noise and fault values, total 
170 samples were collected. Depending on the fault 
location, the signals were categorized into two groups: 
charge amplifier-related and filter-related faults. A 
detailed summary of these fault types is provided in 
Table Ⅲ.  

 
Table Ⅲ. 2nd-stage fault classes and parameters. 

Class Sub 
Label 

Sample 
Counts 

Baseline 
value 

Fault 
value 

Charge 
Amplifier 

R1-high 10 10 kΩ 30 kΩ 
R1-low 10 10 kΩ 100 Ω 
R1-short 10 10 kΩ — 
R1-open 10 10 kΩ — 
R2-short 10 1 kΩ — 

Noise 
Filter 

C1-high 10 50 nF 500 nF 
C1-low 10 50 nF 5 nF 
C1-short 10 50 nF — 
C1-open 10 50 nF — 
C2-high 10 1 nF 100 nF 
C2-low 10 1 nF 0.1 nF 
C2-short 10 1 nF — 
C2-open 10 1 nF — 
R4-high 10 3 kΩ 30 kΩ 
R4-low 10 3 kΩ 100 Ω 
R4-short 10 3 kΩ — 
R4-open 10 3 kΩ — 

 
3. Signal Classification Framework 

 
3.1. Overview of Two-Stage Signal Classification 
Framework 
 

A two-stage hierarchical classification framework was 
developed using tree-based machine learning methods to 
process sensor signals. In each stage, the one-
dimensional time-series signals are transformed into 
two-dimensional time–frequency representations and 
then flattened into fixed-length vectors for input to the 
classifier. 

In the first stage, STFT-derived features are fed into 
an XGBoost model to classify the signals into four 
categories: normal, cable vibration, impact, and circuit 

fault. Only signals identified as circuit faults proceed to 
the second stage. 

In the second stage, CWT is applied to extract more 
fine-grained features, which are then classified by a 
Random Forest model into either charge amplifier faults 
or noise filter faults. This two-stage design reduces false 
alarms in the first stage by improving discrimination 
between impact and non-impact events, and specifies the 
cause of circuit faults in the second stage, thereby 
enhancing the reliability of signal interpretation in 
piezoelectric sensor systems. XGBoost and Random 
Forest—both tree-based learning models—offer robust 
performance even with relatively small training datasets. 
 

 
Figure 7. Classification schema. 

 
3.2. First-stage Classification  

 
In the first stage, the raw time-series signals collected 

from the sensors are processed using STFT to extract 
time–frequency domain features. STFT is well-suited for 
capturing changes in frequency content over short time 
windows, enabling precise alignment of transient and 
stationary components.  

The STFT parameters are summarized in Table Ⅳ. 
The frequency range was limited to components below 
300 Hz to focus on the dominant energy band of the 
signals. The resulting spectra were log-scaled and 
normalized, and for each frequency bin, statistical 
features—mean, standard deviation, maximum, 
minimum, skewness, and kurtosis—were calculated. The 
resulting feature vector was zero-padded to a fixed length 
of 3,000 before being passed to the classifier. 

The extracted features were classified using XGBoost, 
a gradient boosting–based ensemble method known for 
its strong generalization ability and capacity to model 
complex, nonlinear decision boundaries. The 
hyperparameters used for XGBoost are listed in Table Ⅴ. 
This stage outputs one of four classes: normal, cable 
vibration, impact, or circuit fault. Only signals labeled as 
circuit faults are passed to the second stage. 
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Table Ⅳ. STFT parameter settings. 
Parameter Value Description 
Sampling 
frequency 

1600 
Hz 

Acquisition rate of raw 
signals 

Window length 256 Number of samples per 
window 

Overlap 128 Overlapping samples 
between windows 

Frequency 
range 

≤ 300 
Hz 

Retained frequency 
components 

 
Table Ⅴ. XGBoost parameter settings. 

Parameter Value Note 

use_label_encoder False Disable deprecated label 
encoder 

eval_metric mlogloss Multiclass log loss 
evaluation 

Random_state 42 Reproducibility 
Others Default XGBoost default settings 

 
3.3. Second-stage Classification 

 
The second stage further analyzes the signals 

classified as circuit faults in order to identify the 
underlying cause. CWT is applied to these signals to 
extract time–frequency features with variable resolution, 
enabling precise characterization of both transient and 
noise-related patterns. This makes CWT effective in 
distinguishing between faults originating from the charge 
amplifier and those from the noise filter.  

The CWT parameters are summarized in Table Ⅵ. The 
wavelet transform was performed using the Morlet 
mother wavelet with integer scales ranging from 1 to 30, 
providing coverage of both fine and coarse resolutions. 
For each scale, the mean, standard deviation, maximum, 
and minimum of the wavelet coefficients were calculated, 
and the results were flattened into a one-dimensional 
feature vector.  

These features were then classified using a Random 
Forest model, an ensemble of decision trees that 
improves classification accuracy through majority voting. 
Random Forest is robust to noise and performs well even 
on relatively small datasets, making it suitable for the 
conditions of this study. The hyperparameters used for 
the Random Forest classifier are listed in Table Ⅶ. 

 
Table Ⅵ. CWT parameter settings. 

Parameter Value Description 
Mother 
wavelet 

Morlet 
(morl) 

Wavelet type used for 
decomposition 

Scale range 1–30 Integer scales for multi-
resolution analysis 

Statistical 
features 

Mean, Std, 
Max, Min 

Extracted from wavelet 
coefficients 

 
Table Ⅶ. Randomforest parameter settings. 

Parameter Value Note 

Random_state 42 Reproducibility 

Others Default scikit-learn 
 default settings 

 
4. Training & Test Results 

 
4.1. Training 
 

To assess the learning behavior of the proposed 
classifiers, this study utilized loss curves and t-SNE 
embeddings. The dataset was stratified and split into 80% 
training and 20% testing. As shown in Figure 8, the 
validation loss of the XGBoost model converged to 
below 0.01 around boosting round 60, indicating stable 
training. For qualitative visualization, the feature vectors 
used by the Random Forest stage were projected using t-
SNE (Figure 9). The clusters may appear diffuse due to 
the aggregation of 17 fault subclasses into two top-level 
categories, but are well separated at the subclass level, 
indicating effective model learning. 

 
Figure 8. XGBoost training and validation loss. 

 

 
Figure 9. Randomforest t-SNE projection of features 

(aggregated into charge-amplifier vs. noise-filter groups). 
 
4.2. Test Results 
 

The two-stage classification framework was evaluated 
with STFT features and an XGBoost classifier in the first 
stage, and CWT features and a Random Forest classifier 
in the second stage. Because the held-out test set is class-
imbalanced (e.g., some first-stage classes have only two 
samples), performance is summarized using overall 
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accuracy together with macro- and weighted-averaged 
precision/recall/F1.  

At the First stage (STFT + XGBoost), the classifier 
correctly classified 40 out of 40 samples (100.0%) on the 
test set, with macro F1 = 1.00 and weighted F1 = 1.00 
(Table Ⅷ). Notably, impact was cleanly separated from 
circuit fault, a pair often confounded in threshold-based 
LPMS pipelines. On the Second stage (CWT + Random 
Forest), the classifier correctly classified 34 out of 34 
samples (100.0%), with macro F1 = 1.00 and weighted 
F1 = 1.00 (Table Ⅸ), distinguishing charge-amplifier 
from noise-filter faults without error.  

To compare classification performance, a 1D-CNN 
was also trained on raw waveforms (no explicit time–
frequency features). The model achieved 90% accuracy 
at the first stage (macro F1 = 0.49, weighted F1 = 0.85) 
and 94% accuracy at the second stage (macro F1 = 0.93, 
weighted F1 = 0.94) (Tables Ⅺ-Ⅻ). For validation, 
Stage-2 performance of the CNN baseline was computed 
on a fixed set of 24 ground-truth circuit-fault samples, 
bypassing the usual routing of only Stage-1 “circuit-fault” 
predictions. The first-stage degradation is concentrated 
in small-support classes (Normal, Cable Vibration; n = 2 
each). These results show that a two-stage classification 
framework with STFT/CWT features and tree-based 
models outperform an end-to-end CNN under limited 
and imbalanced data—improving accuracy by +10 
percentage points in Stage 1 (100% vs 90%) and +6 
points in Stage 2 (100% vs 94%), with large gains in 
macro F1 for small-support classes. 

 
Table Ⅷ. 1st-stage classifier results. 

 Precision  Recall F1-
score 

support 

Normal 1.00  1.00 1.00 2 
Impact 1.00  1.00 1.00 2 
Cable 

Vibration 
1.00  1.00 1.00 2 

Circuit 
Fault 

1.00  1.00 1.00 34 

Accuracy    1.00 40 
Macro 

avg 
1.00  1.00 1.00 40 

Weighted 
avg 

1.00  1.00 1.00 40 

 
Table Ⅸ. 2nd-stage classifier results. 

 Precision Recall F1-
score 

support 

Charge 
Amplifier 

1.00 1.00 1.00 10 

Noise 
Filter 

1.00 1.00 1.00 24 

Accuracy   1.00 34 
Macro 

avg 
1.00 1.00 1.00 34 

Weighted 
avg 

1.00 1.00 1.00 34 

 
Table Ⅹ. 1D‑CNN architecture used (both stages). 

Layer Details 

Output 
channels / size 

(for input length 
3000) 

Conv1d + 
ReLU 

in=1, out=16, 
kernel=64, 

stride=16, pad=0 
16 × 184 

MaxPool1d kernel=4, stride=4 16 × 46 

Conv1d + 
ReLU 

in=16, out=32, 
kernel=16, stride=4, 

pad=0 
32 × 8 

MaxPool1d kernel=2, stride=2 32 × 4 

Conv1d + 
ReLU 

in=32, out=64, 
kernel=4, stride=1, 

pad=0 
64 × 1 

Flatten — 64 
Linear + 
ReLU 64 → 128 128 

Dropout p = 0.5 128 

Linear 
(output) 

Stage-1: 128 → 4 
classes; Stage-2: 128 

→ 2 classes 
— 

 
Table Ⅺ. 1st-stage 1D-CNN classification report. 

 Precision Recall F1-
score 

support 

Normal 0.00 0.00 0.00 2 
Impact 1.00 1.00 1.00 2 
Cable 

Vibration 
0.00 0.00 0.00 2 

Circuit 
Fault 

0.89 1.00 0.94 
 

34 

Accuracy   0.90 40 
Macro 

avg 
0.47 0.50 0.49 40 

Weighted 
avg 

0.81 0.90 0.85 40 

 
Table Ⅻ. 2nd-stage 1D-CNN classification report. 

 Precision Recall F1-
score 

support 

Charge 
Amplifier 

0.83 1.00 0.91 10 

Noise 
Filter 

1.00 0.92 0.96 24 

Accuracy   0.94 34 
Macro 

avg 
0.92 0.96 0.93 34 

Weighted 
avg 

0.95 0.94 0.94 34 
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5. Conclusion 
 

This work presents a two-stage classification 
framework to improve piezoelectric signal interpretation 
accuracy in nuclear power-plant monitoring, with a focus 
on LPMS. A PSPICE-based reconstruction of the analog 
front-end enabled high-quality data generation for both 
normal and abnormal scenarios. STFT and CWT time–
frequency features were extracted and fed to XGBoost 
(first stage) and Random Forest (second stage), 
respectively. On a held-out test set, the framework 
classified 40/40 samples (100%) in Stage 1 and 34/34 
(100%) within the circuit-fault subset in Stage 2, while a 
1D-CNN trained on raw waveforms reached 90% and 
94%, respectively. These findings clearly indicate the 
superiority of tree-based models with engineered time–
frequency features over an end-to-end CNN under small 
and imbalanced data, reducing false alarms (impact vs 
non-impact) and improving diagnostic specificity 
(charge-amplifier vs noise-filter faults). This work is 
applicable to safety-critical piezoelectric sensor systems, 
including integrated small modular reactors (i-SMRs), 
where accurate fault classification supports safer 
operation. Expanding this study, the authors plan to 
integrate field measurements, explore hybrid pipelines 
(tree-based + deep backbones), and broaden robustness 
studies across noise/operating conditions.  
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