Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Preliminary Study of GPU Based FDM Acceleration Using Python CUDA

Gihyeon Kim?, Jeong Ik Lee*
“Dept. Nuclear & Quantum Eng., KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
*Corresponding author: jeongiklee@kaist.ac.kr

*Keywords : GPU acceleration, Finite Difference Method

1. Introduction

Small modular reactors are manufactured in modules
at factories and installed at the site near where demand
exists. This reduces costs and enables construction in a
wider range of areas where large conventional nuclear
power plants could not be constructed, such as remote
areas and islands. Additionally, flexible operation is
required to accommodate fluctuations in output at the
demand site. Therefore, there is a cost burden associated
with the operational workforce for small modular
reactors [1], [2], [3]. To address this, methods such as
remote operation or autonomous operation have been
proposed. Among these, autonomous operation aims to
minimize human intervention in all cases, including
normal operation, load-following operation, and accident
operation, by combining artificial intelligence [4].

A Deep Reinforcement Learning (DRL)-based
controller has been proposed for autonomous operation
of small modular reactors. To train the DRL controller, a
learning environment that accurately simulates the
thermal-hydraulic phenomena of the reactor is required.
While existing thermal-hydraulic analysis codes can be
used for controller training, their speed has been
identified as an issue [5], [6]. Therefore, the acceleration
of existing codes is necessary for efficient controller
training.

To analyze thermo-hydraulic system, numerical
analysis methods based on finite element methods such
as computational fluid dynamics and finite element
analysis can be used, but these methods require excessive
computation and take extended time to calculate, clearly
limiting their use in analyzing large systems. Therefore,
most thermal-hydraulic codes currently used for
analyzing nuclear reactor thermal-hydraulic systems,
including MARS-KS and GAMMA+, employ the Finite
Difference Method (FDM) for evaluating heat transfer
and fluid flow. In FDM-based codes, the fluid and
thermal structure are divided into a finite number of
nodes, and the governing equations, which are partial
difference equations, are converted into matrix form for
computation. Thus, the primary role of thermal-hydraulic
codes is to construct a matrix appropriate for the
governing equation and problem situation and perform
calculations on it. By accelerating matrix construction
and calculations, it is possible to improve the speed of
thermal-hydraulic codes. Methods for accelerating
matrix construction and calculations have been well
researched.

Currently, General-purpose computing on graphics
processing units (GPGPU) is gaining attention as a
method for accelerating numerical analysis methods,
including matrix operations. Among these, CUDA is a
representative platform that provides general-purpose
acceleration libraries and supports various programming
languages such as C, C++, Fortran, and Python. In this
study, Python CUDA was used to preliminarily evaluate
the applicability of GPU-based acceleration in nuclear
engineering.

2. Methods and Results

This section describes and compares the results of the
Python based FDM, including the Python CUDA
libraries used, FDM test case, computing conditions, and
the results of the code performance evaluation and
comparison using CUDA.

2.1 Test Case and Code Acceleration Method

A simple test case was set up to pre-evaluate the
acceleration of the FDM using GPU. Although more
complex problems were also possible, a one-dimensional
heat transfer problem with an analytical solution was
selected to determine the consistency of the code.
Furthermore, in the case of heat transfer problems,
thermal structure nodes account for a significant
proportion of actual nuclear analysis codes and are an
important factor in heat exchanger and core analysis,
making them an appropriate choice for this problem.

The selected problem involves -calculating the
temperature distribution of a cylindrical nuclear fuel rod
composed of fuel and cladding surfaces, with boundary
conditions set at the cladding surface temperature.
Assuming a steady state for comparison with the
analytical solution, uniform volumetric heat generation
and constant thermal properties within the fuel region
were assumed. Figure 1 briefly illustrates the problem
situation.

Constant

Fuel Rod Outside
Diameter 9.5mm) |

Clad Thickness
(0.57mm)

Fig. 1. Simple test case for FDM acceleration

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Python code was written for both CPU-based and
GPU-based to solve the test problem. By redesigning the
code based on the GPU, it is more advantageous for
parallelized calculations than CPU-based code. This is
because the designs of the GPU and CPU are different.
The CPU is optimized to execute sequenced tasks
(threads) as quickly as possible, and in general, it can
execute several dozen threads in parallel. On the other
hand, the GPU is optimized to execute thousands of
threads in parallel, even though its single-thread
performance is slow [7]. Therefore, unlike the CPUs
used in existing thermohydraulic analysis codes, GPUs
offer significantly higher instruction throughput and
memory bandwidth than CPUs. In other words, GPUs are
specialized for parallelized calculations and allocate
more transistors to data processing than to data caching
and flow control. This allows memory access delays to
be hidden through computation when handling large-
scale parallelized calculations.

Since most codes are a mix of parallel and sequential
parts, using a GPU does not guarantee improved
performance. Additionally, since GPUs have slower
memory access speeds, they offer no performance
advantages for small-scale calculations. Therefore,
evaluating the performance of GPU-based codes using
simple examples should precede applying them to more
complex cases. For example, if performance
improvements are only seen in GPU-based code when
there are tens of thousands of nodes, then it is
meaningless to use it in nuclear thermohydraulic analysis
code with fewer than a few thousand nodes.

AX =B (1)
. R; w0 0 0
Ri —(Ri+Rit1) Ry - 0 0
; Riss : 0
A=lo ; : R; :
0 0 R —(Rj+Rj:1) R
0 0 0 - Rist
- g]
-5 7= 0)
T, o
. qi-
: - 121 0t —1iy)
Tia p -
x=|T | B= _El(riz_riz_l) Ri= ki (2)
Tiva .
. div1 , o 2
: 2 Tiv1 — 1)
T, :
q
—771(7312 - rg—1)

Both codes perform calculations by constructing the
same matrix expression based on the problem conditions
for the given number of nodes. The linear equation for
the 1D FDM heat transfer problem is shown in Equation
1, and each matrix in Equation 1 is the same as Equation
2. The matrix operations in Equations 1 and 2 were
performed using Python libraries. In the CPU-based code,
Equation 1 was solved using the numpy library, and no
library was used for matrix construction in Equation 2.
In GPU-based code, equation 1 was solved using the
cupy library with CUDA, and CUDA kernels were just-
in-time compiled using the numba library to construct

each matrix in equation 2. Therefore, both matrix
construction and operations for solving FDM problems
were performed on the GPU.

2.2 Code Validation

The temperature and heat flux distributions were
calculated using CPU-based FDM and GPU-based FDM
for the given test cases. The results obtained from these
three calculation methods were compared with the
analytical solution. Figures 2 and 3 show the code
comparison results in graph. It was confirmed that the
FDM results matched the analytical solution for both
codes.

1000 —— Analytical
® FDM_cpu
X FDM_gpu

900

800

Temperature [K]

700

600

0.000 0.001 0.002 0.003 0.004
Radial Distance [m]

Fig. 2. Temperature distribution

~
1=}
S

1 —— Analytical
e FDM_cpu
1 x FDM_gpu

Heat Flux [kW/m?]

N w B v (=)
o (=] (=] (=3 (=]
o o o o o

-
o
IS]

01

0.000 0.001 0.002 0.003 0.004
Radial Distance [m]

Fig. 3. Heat flux distribution

2.3 Code Speed Comparison

The execution time of CPU-based code and GPU-
based code was compared by increasing the number of
nodes using Python 3.12 in the computational
environment shown in Table 1.

Table 1. Computational Environment

Components Specification
CPU Intel® 19-13900
NVIDIA GeForce
GPU RTX 4090
SK Hynix DDRS5-
RAM 5600 (16GB) x2
(O] Windows 11

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 30-31, 2025

Figures 4 and 5 show the difference in execution time
between CPU-based code and GPU-based code
depending on the number of nodes. The execution time
of the code was compared by averaging the results after
performing 1,000 calculations. From 320 nodes onwards,
the GPU-based code outperformed the CPU-based code
in terms of speed. As the number of nodes increased, the
speed difference exceeded 30 times. The reason for the
slower GPU speed at lower node counts is likely due to
the time required to transfer data to GPU memory. These
results may vary depending on the computational
environment.

1.00E+01
1.00E+00
10 100 1000 10000
1.00E-01
1.00E-02
1.00E-03
1.00E-04 //

1.00E-05

Time [sec]

Number of Nodes
—eo—CPU —e—GPU

Fig. 4. Execution time comparison between CPU and GPU
based Python FDM code

1.00E+02

1.00E+01

1.00E+00
10 100 1000 10000

Time Ratio

1.00E-01

1.00E-02
Number of Nodes

Fig. 5. Ratio of CPU and GPU based Python FDM code
execution time

3. Conclusions

This study conducted a preliminary evaluation of the
application of GPU-based code to nuclear systems. For
the evaluation, CPU-based and GPU-based codes were
written in Python to solve a simple thermal-hydraulic
example. It was confirmed that the GPU-based code
outperformed the CPU-based code in terms of speed
when the number of nodes reached several hundred. It is
expected that the condition under which the GPU-based
code outperforms the CPU-based code in terms of speed
will be similar on a logarithmic scale even in more
complex systems. This is because the time required for
matrix operations was found to be greater than the time
required for matrix construction for calculations.
Additionally, since thermal-hydraulic analysis codes
require matrix calculations of the square of the number

of nodes, the value of using GPU-based codes increases
as the system grows larger.

In the case of nuclear thermal-hydraulic systems, as
the fidelity of the code calculation becomes more
important greater number of nodes will be needed,
making the use of GPU-based code more meaningful.
Furthermore, the fact that GPU-based acceleration is
meaningful only when the number of nodes reaches
hundreds implies that there is no reason to apply GPU-
based computation to programs with a small number of
nodes, and that the target for GPU acceleration must be
carefully selected. As a future work, GPU acceleration
performance tests will be conducted using examples
other than heat transfer, and if the results are promising,
an attempt will be made to build a general solver.

ACKNOWLEDGEMENTS

"This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. RS-2025-25454059)."

REFERENCES

[1] A. Asuega, B. J. Limb, and J. C. Quinn, “Techno-
economic analysis of advanced small modular
nuclear reactors,” App! Energy, vol. 334, p. 120669,
2023.

[2] G. Locatelli, C. Bingham, and M. Mancini, “Small
modular reactors: A comprehensive overview of their
economics and strategic aspects,” Progress in
Nuclear Energy, vol. 73, pp. 75-85, 2014.

[3] J. Vuji¢, R. M. Bergmann, R. Skoda, and M. Mileti¢,
“Small modular reactors: Simpler, safer, cheaper?,”
Energy, vol. 45, no. 1, pp. 288-295, 2012.

[4] J. Kim, D. Lee, J. Yang, and S. Lee, “Conceptual
design of autonomous emergency operation system
for nuclear power plants and its prototype,” Nuclear
Engineering and Technology, vol. 52, no. 2, pp. 308—
322, 2020.

[5] J. Y. Baek, T. Min, and J. I. Lee, “Robustness of
Deep-Reinforcement-Learning Control for Fast
Load-Following-Operation of S-CO2 Microreactor,”
Trans Am Nucl Soc, vol. 131, no. 1, pp. 310-313,
2024.

[6] J. Y. Baek and J. I. Lee, “Development of a Time-
Series Surrogate Model for Predicting System
Dynamics in KAIST-MMR under Load-following
Operation”. Transactions of the Korean Nuclear
Society Spring Meeting Jeju, Korea, May 10, 2024

[7] NVIDIA Corporation, “CUDA C++ Programming
Guide Release 13.0,” 2025.

