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1. Introduction 

 
Small modular reactors are manufactured in modules 

at factories and installed at the site near where demand 

exists. This reduces costs and enables construction in a 

wider range of areas where large conventional nuclear 

power plants could not be constructed, such as remote 

areas and islands. Additionally, flexible operation is 

required to accommodate fluctuations in output at the 

demand site. Therefore, there is a cost burden associated 

with the operational workforce for small modular 

reactors [1], [2], [3]. To address this, methods such as 

remote operation or autonomous operation have been 

proposed. Among these, autonomous operation aims to 

minimize human intervention in all cases, including 

normal operation, load-following operation, and accident 

operation, by combining artificial intelligence [4].  

A Deep Reinforcement Learning (DRL)-based 

controller has been proposed for autonomous operation 

of small modular reactors. To train the DRL controller, a 

learning environment that accurately simulates the 

thermal-hydraulic phenomena of the reactor is required. 

While existing thermal-hydraulic analysis codes can be 

used for controller training, their speed has been 

identified as an issue [5], [6]. Therefore, the acceleration 

of existing codes is necessary for efficient controller 

training. 

To analyze thermo-hydraulic system, numerical 

analysis methods based on finite element methods such 

as computational fluid dynamics and finite element 

analysis can be used, but these methods require excessive 

computation and take extended time to calculate, clearly 

limiting their use in analyzing large systems. Therefore, 

most thermal-hydraulic codes currently used for 

analyzing nuclear reactor thermal-hydraulic systems, 

including MARS-KS and GAMMA+, employ the Finite 

Difference Method (FDM) for evaluating heat transfer 

and fluid flow. In FDM-based codes, the fluid and 

thermal structure are divided into a finite number of 

nodes, and the governing equations, which are partial 

difference equations, are converted into matrix form for 

computation. Thus, the primary role of thermal-hydraulic 

codes is to construct a matrix appropriate for the 

governing equation and problem situation and perform 

calculations on it. By accelerating matrix construction 

and calculations, it is possible to improve the speed of 

thermal-hydraulic codes. Methods for accelerating 

matrix construction and calculations have been well 

researched. 

Currently, General-purpose computing on graphics 

processing units (GPGPU) is gaining attention as a 

method for accelerating numerical analysis methods, 

including matrix operations. Among these, CUDA is a 

representative platform that provides general-purpose 

acceleration libraries and supports various programming 

languages such as C, C++, Fortran, and Python. In this 

study, Python CUDA was used to preliminarily evaluate 

the applicability of GPU-based acceleration in nuclear 

engineering. 

 

2. Methods and Results 

 

This section describes and compares the results of the 

Python based FDM, including the Python CUDA 

libraries used, FDM test case, computing conditions, and 

the results of the code performance evaluation and 

comparison using CUDA. 

 

2.1 Test Case and Code Acceleration Method 

 

A simple test case was set up to pre-evaluate the 

acceleration of the FDM using GPU. Although more 

complex problems were also possible, a one-dimensional 

heat transfer problem with an analytical solution was 

selected to determine the consistency of the code. 
Furthermore, in the case of heat transfer problems, 

thermal structure nodes account for a significant 

proportion of actual nuclear analysis codes and are an 

important factor in heat exchanger and core analysis, 

making them an appropriate choice for this problem. 

 The selected problem involves calculating the 

temperature distribution of a cylindrical nuclear fuel rod 

composed of fuel and cladding surfaces, with boundary 

conditions set at the cladding surface temperature. 

Assuming a steady state for comparison with the 

analytical solution, uniform volumetric heat generation 

and constant thermal properties within the fuel region 

were assumed. Figure 1 briefly illustrates the problem 

situation. 

 
Fig. 1. Simple test case for FDM acceleration 
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Python code was written for both CPU-based and 

GPU-based to solve the test problem. By redesigning the 

code based on the GPU, it is more advantageous for 

parallelized calculations than CPU-based code. This is 

because the designs of the GPU and CPU are different. 

The CPU is optimized to execute sequenced tasks 

(threads) as quickly as possible, and in general, it can 

execute several dozen threads in parallel. On the other 

hand, the GPU is optimized to execute thousands of 

threads in parallel, even though its single-thread 

performance is slow [7]. Therefore, unlike the CPUs 

used in existing thermohydraulic analysis codes, GPUs 

offer significantly higher instruction throughput and 

memory bandwidth than CPUs. In other words, GPUs are 

specialized for parallelized calculations and allocate 

more transistors to data processing than to data caching 

and flow control. This allows memory access delays to 

be hidden through computation when handling large-

scale parallelized calculations. 

Since most codes are a mix of parallel and sequential 

parts, using a GPU does not guarantee improved 

performance. Additionally, since GPUs have slower 

memory access speeds, they offer no performance 

advantages for small-scale calculations. Therefore, 

evaluating the performance of GPU-based codes using 

simple examples should precede applying them to more 

complex cases. For example, if performance 

improvements are only seen in GPU-based code when 

there are tens of thousands of nodes, then it is 

meaningless to use it in nuclear thermohydraulic analysis 

code with fewer than a few thousand nodes. 
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Both codes perform calculations by constructing the 

same matrix expression based on the problem conditions 

for the given number of nodes. The linear equation for 

the 1D FDM heat transfer problem is shown in Equation 

1, and each matrix in Equation 1 is the same as Equation 

2. The matrix operations in Equations 1 and 2 were 

performed using Python libraries. In the CPU-based code, 

Equation 1 was solved using the numpy library, and no 

library was used for matrix construction in Equation 2. 

In GPU-based code, equation 1 was solved using the 

cupy library with CUDA, and CUDA kernels were just-

in-time compiled using the numba library to construct 

each matrix in equation 2. Therefore, both matrix 

construction and operations for solving FDM problems 

were performed on the GPU. 

 

2.2 Code Validation 

 

The temperature and heat flux distributions were 

calculated using CPU-based FDM and GPU-based FDM 

for the given test cases. The results obtained from these 

three calculation methods were compared with the 

analytical solution. Figures 2 and 3 show the code 

comparison results in graph. It was confirmed that the 

FDM results matched the analytical solution for both 

codes. 

 

 
Fig. 2. Temperature distribution 

 

 

 
Fig. 3. Heat flux distribution 

 

2.3 Code Speed Comparison 

 

The execution time of CPU-based code and GPU-

based code was compared by increasing the number of 

nodes using Python 3.12 in the computational 

environment shown in Table 1. 

 

Table 1. Computational Environment 

Components Specification 

CPU Intel®  i9-13900 

GPU 
NVIDIA GeForce 

RTX 4090 

RAM 
SK Hynix DDR5-

5600 (16GB) x2 

OS Windows 11 
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Figures 4 and 5 show the difference in execution time 

between CPU-based code and GPU-based code 

depending on the number of nodes. The execution time 

of the code was compared by averaging the results after 

performing 1,000 calculations. From 320 nodes onwards, 

the GPU-based code outperformed the CPU-based code 

in terms of speed. As the number of nodes increased, the 

speed difference exceeded 30 times. The reason for the 

slower GPU speed at lower node counts is likely due to 

the time required to transfer data to GPU memory. These 

results may vary depending on the computational 

environment. 

 

 
Fig. 4. Execution time comparison between CPU and GPU 

based Python FDM code 

 
Fig. 5. Ratio of CPU and GPU based Python FDM code 

execution time 

 

 

3. Conclusions 

 

This study conducted a preliminary evaluation of the 

application of GPU-based code to nuclear systems. For 

the evaluation, CPU-based and GPU-based codes were 

written in Python to solve a simple thermal-hydraulic 

example. It was confirmed that the GPU-based code 

outperformed the CPU-based code in terms of speed 

when the number of nodes reached several hundred. It is 

expected that the condition under which the GPU-based 

code outperforms the CPU-based code in terms of speed 

will be similar on a logarithmic scale even in more 

complex systems. This is because the time required for 

matrix operations was found to be greater than the time 

required for matrix construction for calculations. 

Additionally, since thermal-hydraulic analysis codes 

require matrix calculations of the square of the number 

of nodes, the value of using GPU-based codes increases 

as the system grows larger.  

In the case of nuclear thermal-hydraulic systems, as 

the fidelity of the code calculation becomes more 

important greater number of nodes will be needed, 

making the use of GPU-based code more meaningful. 

Furthermore, the fact that GPU-based acceleration is 

meaningful only when the number of nodes reaches 

hundreds implies that there is no reason to apply GPU-

based computation to programs with a small number of 

nodes, and that the target for GPU acceleration must be 

carefully selected. As a future work, GPU acceleration 

performance tests will be conducted using examples 

other than heat transfer, and if the results are promising, 

an attempt will be made to build a general solver. 
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