
Transactions of the Korean Nuclear Society Autumn Meeting

Changwon, Korea, October 30-31, 2025

Preliminary Study of GPU Based FDM Acceleration Using Python CUDA

Gihyeon Kim a, Jeong Ik Leea

aDept. Nuclear & Quantum Eng., KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
*Corresponding author: jeongiklee@kaist.ac.kr

*Keywords : GPU acceleration, Finite Difference Method

1. Introduction

Small modular reactors are manufactured in modules

at factories and installed at the site near where demand

exists. This reduces costs and enables construction in a

wider range of areas where large conventional nuclear

power plants could not be constructed, such as remote

areas and islands. Additionally, flexible operation is

required to accommodate fluctuations in output at the

demand site. Therefore, there is a cost burden associated

with the operational workforce for small modular

reactors [1], [2], [3]. To address this, methods such as

remote operation or autonomous operation have been

proposed. Among these, autonomous operation aims to

minimize human intervention in all cases, including

normal operation, load-following operation, and accident

operation, by combining artificial intelligence [4].

A Deep Reinforcement Learning (DRL)-based

controller has been proposed for autonomous operation

of small modular reactors. To train the DRL controller, a

learning environment that accurately simulates the

thermal-hydraulic phenomena of the reactor is required.

While existing thermal-hydraulic analysis codes can be

used for controller training, their speed has been

identified as an issue [5], [6]. Therefore, the acceleration

of existing codes is necessary for efficient controller

training.

To analyze thermo-hydraulic system, numerical

analysis methods based on finite element methods such

as computational fluid dynamics and finite element

analysis can be used, but these methods require excessive

computation and take extended time to calculate, clearly

limiting their use in analyzing large systems. Therefore,

most thermal-hydraulic codes currently used for

analyzing nuclear reactor thermal-hydraulic systems,

including MARS-KS and GAMMA+, employ the Finite

Difference Method (FDM) for evaluating heat transfer

and fluid flow. In FDM-based codes, the fluid and

thermal structure are divided into a finite number of

nodes, and the governing equations, which are partial

difference equations, are converted into matrix form for

computation. Thus, the primary role of thermal-hydraulic

codes is to construct a matrix appropriate for the

governing equation and problem situation and perform

calculations on it. By accelerating matrix construction

and calculations, it is possible to improve the speed of

thermal-hydraulic codes. Methods for accelerating

matrix construction and calculations have been well

researched.

Currently, General-purpose computing on graphics

processing units (GPGPU) is gaining attention as a

method for accelerating numerical analysis methods,

including matrix operations. Among these, CUDA is a

representative platform that provides general-purpose

acceleration libraries and supports various programming

languages such as C, C++, Fortran, and Python. In this

study, Python CUDA was used to preliminarily evaluate

the applicability of GPU-based acceleration in nuclear

engineering.

2. Methods and Results

This section describes and compares the results of the

Python based FDM, including the Python CUDA

libraries used, FDM test case, computing conditions, and

the results of the code performance evaluation and

comparison using CUDA.

2.1 Test Case and Code Acceleration Method

A simple test case was set up to pre-evaluate the

acceleration of the FDM using GPU. Although more

complex problems were also possible, a one-dimensional

heat transfer problem with an analytical solution was

selected to determine the consistency of the code.
Furthermore, in the case of heat transfer problems,

thermal structure nodes account for a significant

proportion of actual nuclear analysis codes and are an

important factor in heat exchanger and core analysis,

making them an appropriate choice for this problem.

 The selected problem involves calculating the

temperature distribution of a cylindrical nuclear fuel rod

composed of fuel and cladding surfaces, with boundary

conditions set at the cladding surface temperature.

Assuming a steady state for comparison with the

analytical solution, uniform volumetric heat generation

and constant thermal properties within the fuel region

were assumed. Figure 1 briefly illustrates the problem

situation.

Fig. 1. Simple test case for FDM acceleration

Transactions of the Korean Nuclear Society Autumn Meeting

Changwon, Korea, October 30-31, 2025

Python code was written for both CPU-based and

GPU-based to solve the test problem. By redesigning the

code based on the GPU, it is more advantageous for

parallelized calculations than CPU-based code. This is

because the designs of the GPU and CPU are different.

The CPU is optimized to execute sequenced tasks

(threads) as quickly as possible, and in general, it can

execute several dozen threads in parallel. On the other

hand, the GPU is optimized to execute thousands of

threads in parallel, even though its single-thread

performance is slow [7]. Therefore, unlike the CPUs

used in existing thermohydraulic analysis codes, GPUs

offer significantly higher instruction throughput and

memory bandwidth than CPUs. In other words, GPUs are

specialized for parallelized calculations and allocate

more transistors to data processing than to data caching

and flow control. This allows memory access delays to

be hidden through computation when handling large-

scale parallelized calculations.

Since most codes are a mix of parallel and sequential

parts, using a GPU does not guarantee improved

performance. Additionally, since GPUs have slower

memory access speeds, they offer no performance

advantages for small-scale calculations. Therefore,

evaluating the performance of GPU-based codes using

simple examples should precede applying them to more

complex cases. For example, if performance

improvements are only seen in GPU-based code when

there are tens of thousands of nodes, then it is

meaningless to use it in nuclear thermohydraulic analysis

code with fewer than a few thousand nodes.
AX = B⋯(1)

 A =

[

⋱ 𝑅𝑖 ⋯ 0 0 0

𝑅𝑖 −(𝑅𝑖 + 𝑅𝑖+1) 𝑅𝑖+1 ⋯ 0 0
⋮ 𝑅𝑖+1 ⋱ ⋱ ⋮ 0
0 ⋮ ⋱ ⋱ 𝑅𝑗 ⋮

0 0 ⋯ 𝑅𝑗 −(𝑅𝑗 + 𝑅𝑗+1) 𝑅𝑗+1

0 0 0 ⋯ 𝑅𝑗+1 ⋱]

,

X =

[

𝑇1

⋮
𝑇𝑖−1

𝑇𝑖

𝑇𝑖+1

⋮
𝑇𝑛]

, 𝐵 =

[

 −

𝑞1̇

2
(𝑟1

2 − 0)

⋮

−
𝑞̇𝑖−1

2
(𝑟𝑖−1

2 − 𝑟𝑖−2
2)

−
𝑞𝑖̇

2
(𝑟𝑖

2 − 𝑟𝑖−1
2)

−
𝑞̇𝑖+1

2
(𝑟𝑖+1

2 − 𝑟𝑖
2)

⋮

−
𝑞𝑛̇

2
(𝑟𝑛

2 − 𝑟𝑛−1
2)

]

, 𝑅𝑖 = 𝑘𝑖

𝑟𝑖
∆𝑟

⋯(2)

Both codes perform calculations by constructing the

same matrix expression based on the problem conditions

for the given number of nodes. The linear equation for

the 1D FDM heat transfer problem is shown in Equation

1, and each matrix in Equation 1 is the same as Equation

2. The matrix operations in Equations 1 and 2 were

performed using Python libraries. In the CPU-based code,

Equation 1 was solved using the numpy library, and no

library was used for matrix construction in Equation 2.

In GPU-based code, equation 1 was solved using the

cupy library with CUDA, and CUDA kernels were just-

in-time compiled using the numba library to construct

each matrix in equation 2. Therefore, both matrix

construction and operations for solving FDM problems

were performed on the GPU.

2.2 Code Validation

The temperature and heat flux distributions were

calculated using CPU-based FDM and GPU-based FDM

for the given test cases. The results obtained from these

three calculation methods were compared with the

analytical solution. Figures 2 and 3 show the code

comparison results in graph. It was confirmed that the

FDM results matched the analytical solution for both

codes.

Fig. 2. Temperature distribution

Fig. 3. Heat flux distribution

2.3 Code Speed Comparison

The execution time of CPU-based code and GPU-

based code was compared by increasing the number of

nodes using Python 3.12 in the computational

environment shown in Table 1.

Table 1. Computational Environment

Components Specification

CPU Intel® i9-13900

GPU
NVIDIA GeForce

RTX 4090

RAM
SK Hynix DDR5-

5600 (16GB) x2

OS Windows 11

Transactions of the Korean Nuclear Society Autumn Meeting

Changwon, Korea, October 30-31, 2025

Figures 4 and 5 show the difference in execution time

between CPU-based code and GPU-based code

depending on the number of nodes. The execution time

of the code was compared by averaging the results after

performing 1,000 calculations. From 320 nodes onwards,

the GPU-based code outperformed the CPU-based code

in terms of speed. As the number of nodes increased, the

speed difference exceeded 30 times. The reason for the

slower GPU speed at lower node counts is likely due to

the time required to transfer data to GPU memory. These

results may vary depending on the computational

environment.

Fig. 4. Execution time comparison between CPU and GPU

based Python FDM code

Fig. 5. Ratio of CPU and GPU based Python FDM code

execution time

3. Conclusions

This study conducted a preliminary evaluation of the

application of GPU-based code to nuclear systems. For

the evaluation, CPU-based and GPU-based codes were

written in Python to solve a simple thermal-hydraulic

example. It was confirmed that the GPU-based code

outperformed the CPU-based code in terms of speed

when the number of nodes reached several hundred. It is

expected that the condition under which the GPU-based

code outperforms the CPU-based code in terms of speed

will be similar on a logarithmic scale even in more

complex systems. This is because the time required for

matrix operations was found to be greater than the time

required for matrix construction for calculations.

Additionally, since thermal-hydraulic analysis codes

require matrix calculations of the square of the number

of nodes, the value of using GPU-based codes increases

as the system grows larger.

In the case of nuclear thermal-hydraulic systems, as

the fidelity of the code calculation becomes more

important greater number of nodes will be needed,

making the use of GPU-based code more meaningful.

Furthermore, the fact that GPU-based acceleration is

meaningful only when the number of nodes reaches

hundreds implies that there is no reason to apply GPU-

based computation to programs with a small number of

nodes, and that the target for GPU acceleration must be

carefully selected. As a future work, GPU acceleration

performance tests will be conducted using examples

other than heat transfer, and if the results are promising,

an attempt will be made to build a general solver.

ACKNOWLEDGEMENTS

"This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (No. RS-2025-25454059)."

REFERENCES

[1] A. Asuega, B. J. Limb, and J. C. Quinn, “Techno-

economic analysis of advanced small modular

nuclear reactors,” Appl Energy, vol. 334, p. 120669,

2023.

[2] G. Locatelli, C. Bingham, and M. Mancini, “Small

modular reactors: A comprehensive overview of their

economics and strategic aspects,” Progress in

Nuclear Energy, vol. 73, pp. 75–85, 2014.

[3] J. Vujić, R. M. Bergmann, R. Škoda, and M. Miletić,

“Small modular reactors: Simpler, safer, cheaper?,”

Energy, vol. 45, no. 1, pp. 288–295, 2012.

[4] J. Kim, D. Lee, J. Yang, and S. Lee, “Conceptual

design of autonomous emergency operation system

for nuclear power plants and its prototype,” Nuclear

Engineering and Technology, vol. 52, no. 2, pp. 308–

322, 2020.

[5] J. Y. Baek, T. Min, and J. I. Lee, “Robustness of

Deep-Reinforcement-Learning Control for Fast

Load-Following-Operation of S-CO2 Microreactor,”

Trans Am Nucl Soc, vol. 131, no. 1, pp. 310–313,

2024.

[6] J. Y. Baek and J. I. Lee, “Development of a Time-

Series Surrogate Model for Predicting System

Dynamics in KAIST-MMR under Load-following

Operation”. Transactions of the Korean Nuclear

Society Spring Meeting Jeju, Korea, May 10, 2024

[7] NVIDIA Corporation, “CUDA C++ Programming

Guide Release 13.0,” 2025.

