2025.10.30 Transactions of the Korean

r.w
Nuclear Society Autumn Meeting < NPNP

Python CUDA O|& GPU 7|8t FDM 7}& 7| = A+

Preliminary Study of GPU Based FDM
Acceleration Using Python CUDA

Author: Gihyeon Kim, Jeong Ik Lee

SFE XL A7|F
E-mail : orca2005@kaist.ac.kr

Korea Advanced Institute of Science and Technology

Dept. of Nuclear and Quantum Engineering

Introduction
Pebble Bed Reactor

Next-generation reactors have a more complex thermal
structure compared to conventional PWRs.
Molten Salt Reactor : Molten salt thermal properties
and increased number of loops
Sodium-cooled Fast Reactor : High thermal
conductivity of coolant
Pebble Bed Reactor : Heat conduction between
many irregularly arranged particles
For pebble bed reactors, it is necessary to analyze heat
transfer between irregularly arranged particles, resulting in
large-scale complex heat conduction problems.
In next-generation reactor analysis, solving massive
heat transfer problems efficiently can enhance overall

code performance.

‘e NPNP

J. fiisw el pebbles

coaling gas

heated fluid
o turhinge

-

cold fluid
frgam durhine

[pump

y

h

reinforced 4
concrete spent fuel pebbles

Pebble Bed Reactor

= Y

Pile of Pebbles in Pebble Bed Reactor

< NPNP

Introduction
Finite Difference Method (FDM)

Most nuclear reactor thermal-hydraulic analysis codes,
including MARS-KS and GAMMA+, employ the Finite
Difference Method (FDM) for evaluating thermal structure.
In FDM-based codes

Thermal structure : divided into a finite number of
nodes
Conduction governing equations : partial difference

equation

Both converted into matrix form for computation

The thermal-hydraulic codes
Construct a matrix appropriate for the governing
equation and problem situation FDM Cartesian Grid
Perform matrix calculations

By accelerating matrix construction and calculations, it

is possible to improve the speed of thermal-hydraulic

codes.

YV V V V

¢

Introduction
CUDA

Methods for accelerating matrix construction and calculations have been well researched.

Parallel computing is gaining attention as a method for accelerating numerical analysis methods.

CUDA is a parallel computing platform and programming model developed by NVIDIA.

CUDA is a representative GPU platform that provides general-purpose acceleration libraries and supports
various programming languages such as C, C++, Fortran, and Python.

Widely adopted in fields such as deep learning, scientific computing, and high-performance computing

USE-CASES B j—‘ !“d O O

Speech Translate Recommender Healthcare Manufacturing Finance s
CONSUMER INTERNET INDUSTRIAL APPLICATIONS

APPS &
FRAMEWORKS

MACHINE LEARNING

CUDA-X

CUDA TOOLKIT CUDA DRIVER
GEMENT GRAPHICS
DEBUGGERS PROFILERS S

0S PLATFORMS ,Cj q CentOS %SE ==Window5 Server

CUDA Overview

< NPNP

Introduction
Python CUDA Library

NVIDIA originally developed the CUDA toolkit with
a focus on C/C++

Official Python support is added since 2024
By using Python CUDA library, high performance
GPU computing is available using Python alone.
Using Python can be beneficial for creating digital
twins or reinforcement learning control based on
thermal-fluid analysis code in the future.
To efficiently use CUDA in Python, choose and
use the appropriate library from among the

various available libraries.

Why CUDA Python?

CUDA Python provides uniform APIs and bindings for inclusion into existing toolkits and libraries to

simplify GPU-based parallel processing for HPC, data science, and Al.

' ?
e CUuPy

Numba

NVIDIA.
CUDA

Python CUDA Libraries

< NPNP

-6 -
Introduction
Python CUDA Library
o8
Numba < CuPy Ve CUPY
Numba Vo
Developed to accelerate numerical analysis Provides advanced functionality for scientific
using Python and technical computing in Python
Enables development of CUDA kernels Offers GPU-accelerated libraries compatible
based on JIT (Just-In-Time) compilation with NumPy and SciPy
Limited set of available functions Difficulty in writing CUDA kernels primarily at
Array-related functions cannot be a high level

used

— Using Numba and CuPy complementarily enables fast and efficient development!

Introduction
CPU vs GPU

» Designs of CPU and GPU
» CPU

» Optimized to execute sequenced

Core Core

tasks (threads) as quickly as L1 Cache L1 Cache

Core

possible SoE

L1 Cache L1 Cache

» Can execute several dozen

L2 Cache L2 Cache

threads in parallel
» GPU

» Optimized to execute thousands of

L3 Cache

L2 Cache

CPU
threads in parallel CPU v. GPU

» Single-thread performance is slow

< NPNP

Introduction
CPU vs GPU

GPU-based code is more advantageous for parallelized calculations than CPU-based code.
GPUs offer significantly higher instruction throughput and memory bandwidth than CPUs.
GPUs allocate more transistors to data processing than to data caching and flow control.

Memory access delays while computation hides for large-scale parallelized calculations.

Since most codes are a mix of parallel and sequential parts, using a GPU does not guarantee

improved performance.

Additionally, since GPUs have slower memory access speeds, they offer no performance

advantages for small-scale calculations.

— The decision to use a GPU should be made based on the type and size of the problem!

‘e NPNP

Methodology

FDM Example
Test Case

« A simple test case was set up to pre-evaluate the acceleration of the FDM using GPU.
« A one-dimensional heat transfer problem with an analytical solution was selected.
» Determine the consistency of the code
« Thermal structure node accounts large proportion of actual analysis code
« Compare analytical solution with the numerical solution calculated using CPU and GPU.
* Problem Descriptions
Constant

Cylindrical nuclear fuel rods composed of fuel and cladding Cladding Temperature
(583K)

Cladding surface temperature boundary condition
Steady state temperature distribution
Uniform volumetric heat generation

Constant thermal properties

o U W iNHKe

Have analytical solution

(V-4
~

A4

I
|
Fuel Rod Outside |
Diameter (9.5mm) |

|

<>

Clad Thickness
(0.57mm)

e
-10 - < NPNP

Methodology

FDM Example
Governing Equation and Algorithm

» Both CPU-based code and GPU-based code construct and compute the same matrix equation based on
the problem conditions.
« Equation 1 : Linear Equation for the 1D FDM heat transfer problem

» Equation 2 : Problem conditions for the given number of nodes

AX=B-:-- (1)
~50i-0
. Ri 0 0 0 7 - T1 1 ql) :
R ~(Ri+Ris1) Rux 0 0 = (it —1iss)
: Rz+1 - : 0 Ti—q di) Ti
i ' ‘ R; X=|T |,B= BERY — 1) Ry = ki (2)
0 ~ R —(Ri+Rji+1) R Tin g
J j+1 }+1 : _ i+1 T-Z _ 7-.2)
_0 0 0 oes R]+1 | i Tn] 2 i+1 i

_ CPU-based GPU-based

Equation 1 NumPy CuPy

Equation 2 - Numba

i ‘©NPNP

Result

Code Validation

Code Validation Using Analytical Solution

— Analytical
® FDM_cpu
X FDM gpu

1000 A

« The temperature and heat flux distributions were 900
calculated using CPU-based FDM and GPU-
based FDM for the given test cases.

800 1

Temperature [K]

« The results obtained from FDM codes were 7007

compared with the analytical solution. 600

« Figures show the code comparison results in 0.000 0.001 0.002 0.003 0.004
Radial Distance [m]
graph.
) 7007 — Analytical
« It was confirmed that the FDM results e FDM._cpu
6001 x FDM_gpu

matched the analytical solution for both
codes.

Heat Flux [kW/m?]

- Both codes have achieved consistency.

0.000 0.001 0.002 0.003 0.004
Radial Distance [m]

Temperature and Heat Flux Distribution

re
-12 - <, NPNP

Result

Code Speed Comparison

Computational Environment

+ The execution time of CPU-based code and GPU-based code was compared by increasing the
number of nodes using Python 3.12
» The execution time of the code was compared by averaging the results after performing 1,000 calculations.
» Comparing CPU-based code with three GPU-based codes
1. Numba only : Only matrix construction done by GPU
2. CuPy only : Only matrix calculation done by GPU
3. CuPy + Numba : Both matrix construction and calculation done by GPU
» Speed comparisons were performed in the following computational environment, and results may vary

depending on the environment.

Specification

CPU Intel® i9-13900
GPU NVIDIA GeForce RTX 4090
RAM SK Hynix DDR5-5600 (16GB) x2

(ON) Windows 11

.
P S NPNP

Result

Code Speed Comparison

« The fastest code varies depending on the number of nodes.
* Few nodes : CPU
« Many nodes : CuPy + Numba
« Code using only Numba and code using only CuPy are slower than the CPU when there are few nodes,
and slower than CuPy + Numba code when there are many nodes.

« Copy overhead to/from the device due to GPU computation increases the time required.

1.00E+01

1.00E+00
10 100 1000 10000

1.00E-01

1.00E-02

Time [sec]

1.00E-03

re
’»>-—

1.00E-04
1.00E-05

Number of Nodes

—8—CPU Numba —@—CuPy —@— CuPy+Numba

— Using a GPU doesn't automatically make things faster; good code structure is necessary.

.
_14 - < NPNP

Result

Code Speed Comparison

 The results comparing GPU-based code hadciad

using CuPy and Numba with CPU-based it 10 100 1000 10000
1.00E-01

code are shown in the graph on the right.

1.00E-02

1.00E-03 = ¢ *
« From 320 nodes onwards, the GPU-based ///
1.00E-04

code outperformed the CPU-based code in B

Time [sec]

Number of Nodes

terms of speed.

—e—CPU —e—GPU

« As the number of nodes increased, the speed 100802

difference exceeded 30 times.
1.00E+01

« The reason for the slower GPU speed at 1.00E+00

10 100 1000 10000

Time Ratio

lower node counts is likely due to the time

required to transfer data to GPU memory. 10080t

1.00E-02
Number of Nodes

-15 -

< NPNP
Summary And Conclusions

Summary

Most nuclear reactor thermal-hydraulic analysis codes, including MARS-KS and GAMMA+,
employ the Finite Difference Method (FDM) for evaluating heat transfer.

By accelerating matrix construction and calculations, it is possible to improve the
speed of thermal-hydraulic codes.

By using Python CUDA library, high performance GPU computing is available using
Python alone.

Although GPU-based code is more advantageous for parallelized calculations than CPU-
based code, most codes are a mix of parallel and sequential parts, using a GPU does
not guarantee improved performance.

The speed of GPU-based code depends on how the code is built.

Even when using a GPU, copy overhead can make it slower than a CPU, so careful
design is required when building GPU-based code.

1D heat transfer FDM case shows the GPU-based code outperformed the CPU-based

code when the node number is bigger than hundreds.

r.w
-16 - <, NPNP

Summary And Conclusions

Conclusions

GPU-based code can outperform the CPU-based code in terms of speed when the

number of nodes reached several hundred.

Since thermal-hydraulic analysis codes require matrix calculations of the square of the
number of nodes, the value of using GPU-based codes increases as the system goes

bigger.

Using a GPU doesn't automatically make things faster; good code structure is

necessary.

As GPU-based acceleration is meaningful only when the number of nodes reaches
hundreds implies that there is no reason to apply GPU-based computation to programs
with a small number of nodes, and that the target for GPU acceleration must be

carefully selected.

‘e NPNP

Thank you

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17

