
Python CUDA 이용 GPU 기반 FDM 가속기초연구

Preliminary Study of GPU Based FDM
Acceleration Using Python CUDA

발표자 : 김기현
E-mail : orca2005@kaist.ac.kr

2025.10.30 Transactions of the Korean
Nuclear Society Autumn Meeting

Author: Gihyeon Kim, Jeong Ik Lee

- 2 -

Introduction
Pebble Bed Reactor

➢ Next-generation reactors have a more complex thermal

structure compared to conventional PWRs.

➢ Molten Salt Reactor : Molten salt thermal properties

and increased number of loops

➢ Sodium-cooled Fast Reactor : High thermal

conductivity of coolant

➢ Pebble Bed Reactor : Heat conduction between

many irregularly arranged particles

➢ For pebble bed reactors, it is necessary to analyze heat

transfer between irregularly arranged particles, resulting in

large-scale complex heat conduction problems.

➢ In next-generation reactor analysis, solving massive

heat transfer problems efficiently can enhance overall

code performance.

Pile of Pebbles in Pebble Bed Reactor

Pebble Bed Reactor

- 3 -

Introduction
Finite Difference Method (FDM)

➢ Most nuclear reactor thermal-hydraulic analysis codes,

including MARS-KS and GAMMA+, employ the Finite

Difference Method (FDM) for evaluating thermal structure.

➢ In FDM-based codes

➢ Thermal structure : divided into a finite number of

nodes

➢ Conduction governing equations : partial difference

equation

➢ Both converted into matrix form for computation

➢ The thermal-hydraulic codes

➢ Construct a matrix appropriate for the governing

equation and problem situation

➢ Perform matrix calculations

➢ By accelerating matrix construction and calculations, it

is possible to improve the speed of thermal-hydraulic

codes.

FDM Cartesian Grid

- 4 -

Introduction
CUDA

➢ Methods for accelerating matrix construction and calculations have been well researched.

➢ Parallel computing is gaining attention as a method for accelerating numerical analysis methods.

➢ CUDA is a parallel computing platform and programming model developed by NVIDIA.

➢ CUDA is a representative GPU platform that provides general-purpose acceleration libraries and supports

various programming languages such as C, C++, Fortran, and Python.

➢ Widely adopted in fields such as deep learning, scientific computing, and high-performance computing

CUDA Overview

- 5 -

Introduction
Python CUDA Library

➢ NVIDIA originally developed the CUDA toolkit with

a focus on C/C++

➢ Official Python support is added since 2024

➢ By using Python CUDA library, high performance

GPU computing is available using Python alone.

➢ Using Python can be beneficial for creating digital

twins or reinforcement learning control based on

thermal-fluid analysis code in the future.

➢ To efficiently use CUDA in Python, choose and

use the appropriate library from among the

various available libraries.

Python CUDA Libraries

- 6 -

Introduction
Python CUDA Library

➢ Developed to accelerate numerical analysis

using Python

➢ Enables development of CUDA kernels

based on JIT (Just-In-Time) compilation

➢ Limited set of available functions

➢ Array-related functions cannot be

used

➢ Provides advanced functionality for scientific

and technical computing in Python

➢ Offers GPU-accelerated libraries compatible

with NumPy and SciPy

➢ Difficulty in writing CUDA kernels primarily at

a high level

Numba CuPy

→ Using Numba and CuPy complementarily enables fast and efficient development!

- 7 -

Introduction
CPU vs GPU

➢ Designs of CPU and GPU

➢ CPU

➢ Optimized to execute sequenced

tasks (threads) as quickly as

possible

➢ Can execute several dozen

threads in parallel

➢ GPU

➢ Optimized to execute thousands of

threads in parallel

➢ Single-thread performance is slow

CPU v. GPU

- 8 -

Introduction
CPU vs GPU

➢ GPU-based code is more advantageous for parallelized calculations than CPU-based code.

➢ GPUs offer significantly higher instruction throughput and memory bandwidth than CPUs.

➢ GPUs allocate more transistors to data processing than to data caching and flow control.

➢ Memory access delays while computation hides for large-scale parallelized calculations.

➢ Since most codes are a mix of parallel and sequential parts, using a GPU does not guarantee

improved performance.

➢ Additionally, since GPUs have slower memory access speeds, they offer no performance

advantages for small-scale calculations.

→ The decision to use a GPU should be made based on the type and size of the problem!

- 9 -

Methodology
FDM Example

• A simple test case was set up to pre-evaluate the acceleration of the FDM using GPU.

• A one-dimensional heat transfer problem with an analytical solution was selected.

• Determine the consistency of the code

• Thermal structure node accounts large proportion of actual analysis code

• Compare analytical solution with the numerical solution calculated using CPU and GPU.

• Problem Descriptions

1. Cylindrical nuclear fuel rods composed of fuel and cladding

2. Cladding surface temperature boundary condition

3. Steady state temperature distribution

4. Uniform volumetric heat generation

5. Constant thermal properties

6. Have analytical solution

 uel

 ladding
 onstant

Temperature

 uel od utside
 iameter mm

 lad Thic ness
 mm

- 10 -

Methodology
FDM Example

• Both CPU-based code and GPU-based code construct and compute the same matrix equation based on

the problem conditions.

• Equation 1 : Linear Equation for the 1D FDM heat transfer problem

• Equation 2 : Problem conditions for the given number of nodes

AX = B⋯(1)

A =

⋱ 𝑅𝑖 ⋯ 0 0 0

𝑅𝑖 − 𝑅𝑖 + 𝑅𝑖+1 𝑅𝑖+1 ⋯ 0 0
⋮ 𝑅𝑖+1 ⋱ ⋱ ⋮ 0
0 ⋮ ⋱ ⋱ 𝑅𝑗 ⋮

0 0 ⋯ 𝑅𝑗 − 𝑅𝑗 + 𝑅𝑗+1 𝑅𝑗+1
0 0 0 ⋯ 𝑅𝑗+1 ⋱

, X =

𝑇1
⋮

𝑇𝑖−1
𝑇𝑖
𝑇𝑖+1
⋮
𝑇𝑛

, 𝐵 =

−
ሶ𝑞1
2

𝑟1
2 − 0

⋮

−
ሶ𝑞𝑖−1
2

𝑟𝑖−1
2 − 𝑟𝑖−2

2

−
ሶ𝑞𝑖
2

𝑟𝑖
2 − 𝑟𝑖−1

2

−
ሶ𝑞𝑖+1
2

𝑟𝑖+1
2 − 𝑟𝑖

2

⋮

−
ሶ𝑞𝑛
2

𝑟𝑛
2 − 𝑟𝑛−1

2

, 𝑅𝑖 = 𝑘𝑖
𝑟𝑖
∆𝑟

⋯(2)

CPU-based GPU-based

Equation 1 NumPy CuPy

Equation 2 - Numba

- 11 -

Result
Code Validation

• The temperature and heat flux distributions were

calculated using CPU-based FDM and GPU-

based FDM for the given test cases.

• The results obtained from FDM codes were

compared with the analytical solution.

• Figures show the code comparison results in

graph.

• It was confirmed that the FDM results

matched the analytical solution for both

codes.

• Both codes have achieved consistency.

Temperature and Heat Flux Distribution

- 12 -

Result
Code Speed Comparison

• The execution time of CPU-based code and GPU-based code was compared by increasing the

number of nodes using Python 3.12

• The execution time of the code was compared by averaging the results after performing 1,000 calculations.

• Comparing CPU-based code with three GPU-based codes

1. Numba only : Only matrix construction done by GPU

2. CuPy only : Only matrix calculation done by GPU

3. CuPy + Numba : Both matrix construction and calculation done by GPU

• Speed comparisons were performed in the following computational environment, and results may vary

depending on the environment.

Components Specification

CPU Intel® i9-13900

GPU NVIDIA GeForce RTX 4090

RAM SK Hynix DDR5-5600 (16GB) x2

OS Windows 11

- 13 -

Result
Code Speed Comparison

• The fastest code varies depending on the number of nodes.

• Few nodes : CPU

• Many nodes : CuPy + Numba

• Code using only Numba and code using only CuPy are slower than the CPU when there are few nodes,

and slower than CuPy + Numba code when there are many nodes.

• Copy overhead to/from the device due to GPU computation increases the time required.

→ Using a GPU doesn't automatically ma e things faster; good code structure is necessary

- 14 -

Result
Code Speed Comparison

• The results comparing GPU-based code

using CuPy and Numba with CPU-based

code are shown in the graph on the right.

• From 320 nodes onwards, the GPU-based

code outperformed the CPU-based code in

terms of speed.

• As the number of nodes increased, the speed

difference exceeded 30 times.

• The reason for the slower GPU speed at

lower node counts is likely due to the time

required to transfer data to GPU memory.

- 15 -

Summary And Conclusions
Summary

➢ Most nuclear reactor thermal-hydraulic analysis codes, including MARS-KS and GAMMA+,

employ the Finite Difference Method (FDM) for evaluating heat transfer.

➢ By accelerating matrix construction and calculations, it is possible to improve the

speed of thermal-hydraulic codes.

➢ By using Python CUDA library, high performance GPU computing is available using

Python alone.

➢ Although GPU-based code is more advantageous for parallelized calculations than CPU-

based code, most codes are a mix of parallel and sequential parts, using a GPU does

not guarantee improved performance.

➢ The speed of GPU-based code depends on how the code is built.

➢ Even when using a GPU, copy overhead can make it slower than a CPU, so careful

design is required when building GPU-based code.

➢ 1D heat transfer FDM case shows the GPU-based code outperformed the CPU-based

code when the node number is bigger than hundreds.

- 16 -

Summary And Conclusions
Conclusions

➢ GPU-based code can outperform the CPU-based code in terms of speed when the

number of nodes reached several hundred.

➢ Since thermal-hydraulic analysis codes require matrix calculations of the square of the

number of nodes, the value of using GPU-based codes increases as the system goes

bigger.

➢ Using a GPU doesn't automatically make things faster; good code structure is

necessary.

➢ As GPU-based acceleration is meaningful only when the number of nodes reaches

hundreds implies that there is no reason to apply GPU-based computation to programs

with a small number of nodes, and that the target for GPU acceleration must be

carefully selected.

T h a n k y o u

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17

