Preliminary Single-code Analysis of Mass and Energy Release and Containment Vessel Response in i-SMR during Postulated LOCA and MSLB Using SPACE Code

Session 5A: Thermal Hydraulic Analysis 1 (09:00, Oct. 30th, 2025)

Korean Nuclear Society Autumn Meeting

Jisu Kim

Engineer

Safety Analysis Department, NSSS Division
KEPCO Engineering & Construction Company, Inc. (KEPCO E&C)

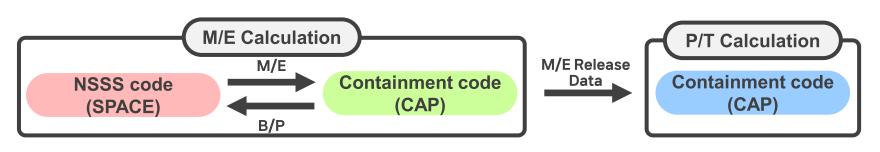
OUTLINE

- 1 Overview
- 2 Analysis Methodology
- 3 Analysis Results
- 4 Concluding Remarks

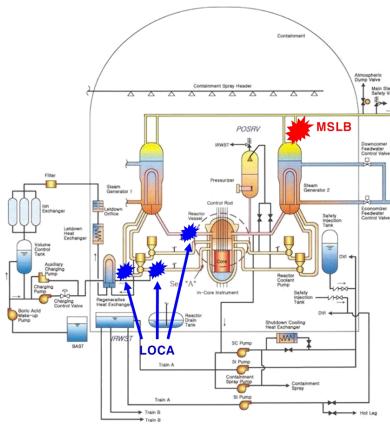
01 Overview

Mass and Energy (M/E) Release & Containment Response Analyses

Reactor Containment


- Final physical barrier against radioactive release (Defense-in-depth)
- Withstand <u>pressure and temperature (P/T)</u> from any design basis accidents

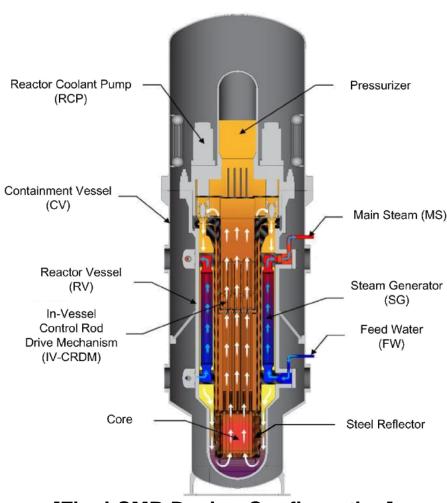
M/E Release Analysis


- Providing boundary condition for containment P/T evaluation
- Loss-of-coolant accident (LOCA) and main steam line break (MSLB) for PWRs.

Containment Response Analysis

- Predicting containment P/T using M/E release data
- For containment functional design, equipment environmental qualification (EEQ)

[Fig. M/E – P/T Analysis Schematic Diagram]


[Fig. Typical Break Locations of LOCA and MSLB in PWR]

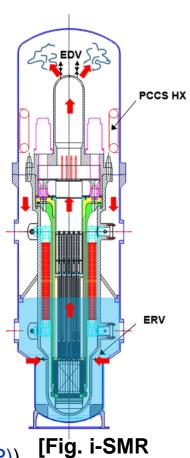
01 Overview

Design Characteristics of Innovative Small Modular Reactor (i-SMR)

- Integral type PWR
 - Reactor power: 520 MWt / 170 MWe
- Containment Vessel (CV)
 - Steel pressure vessel, vacuum condition
 - High design pressure: 5.0 MPa (725 psia) (APR1400 0.52 MPa (60 psig))
- Helical-coiled Steam Generator (HCSG)
 - No steam separator, low inventory
- Passive Emergency Core Cooling System (PECCS)
 - Emergency Depressurization Valve (EDV)
 - Emergency Recirculation Valve (ERV)
- Passive Auxiliary Feedwater System (PAFS)
- Passive Containment Cooling System (PCCS)
- Emergency Cooling Tank (ECT)

[Fig. i-SMR Design Configuration]

01 Overview



M/E Release and CV Response Analyses of i-SMR

- Primary-side Pipe Rupture
 - Large break LOCA (LBLOCA) is fundamentally eliminated in i-SMR
 - Small break LOCA (SBLOCA): Charging Line Break (CLB), Letdown Line Break (LLB)
 - Inadvertent opening of PECCS (IOPECCS): Inadvertent Opening of EDV or ERV (IOEDV, IOERV)
- Secondary-side Pipe Rupture
 - Main steam line break (MSLB) inside CV, feedwater line break (FWLB) inside CV
- Today's Presentation Topic
- Preliminary Study on M/E Release and CV Response of i-SMR
 - LOCA and MSLB scenarios of i-SMR were analyzed using SPACE code.

Single-code Analysis

- The i-SMR standard design employs <u>a two-step approach</u> (M/E release (SPACE) → CV response (CAP)). LO
- In this study, a one-through analysis of M/E release and CV response was performed for preliminary evaluation.

- SPACE Modeling of i-SMR NSSS and CV
 - The standard input deck for i-SMR has been jointly developed by KEPCO E&C, KHNP, KEPCO NF, and FNC.
 - The <u>SPACE ver. 3.3.1 modified by KAERI</u> for i-SMR safety analysis was used.
- Steady-state Calculation
 - M/E basedeck, modified from standard input deck to maximize M/E release and CV response, was used.
 - Initial operating conditions of i-SMR were calculated.
- M/E Release and CV Response Calculations
 - Casedecks for simulating LOCA and MSLB were used.

- Reactor Vessel (RV)
 - Reactor core (
 - RV downcomer (), RCP 4 ea
 - Pressurizer, safety relief valves 2ea (PSRVs)
 - HCSG primary side (Helical shell/tube model,

PECCS

- EDV 3ea (at the top of the pressurizer)
- ERV 2ea (at the RV downcomer)
- Low riser level signal + SOPM actuation

CV

- Vacuum state

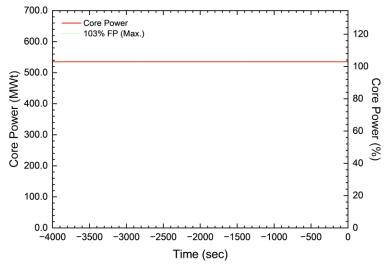
-

- Main Steam & Feedwater System
 - HCSG secondary side (Helical shell/tube model,
 - Main steam line & header, serial MSIVs in one steam line
 - Feedwater line, serial FIVs in one feedwater line
- PAFS (4-train)
 - Improved PAFS condensation model
 - Startup valves operated by reactor trip signal
- PCCS (4-train)
 - High pressure condensation model
- ECT (2-train)

- All assumptions were chosen <u>conservatively to maximize the M/E release and CV response</u> results.
 - Volume expansion for NSSS are assumed.
- Sensitivity studies were performed to determine parameters.

[Table. Major Assumptions for M/E Release and CV Response Analyses of i-SMR]

Parameters	Assumptions				
Initiating event	 LOCA: CLB inside CV, LLB inside CV, IOEDV, IOERV MSLB inside CV 				
Initial operating conditions	Core Power 103%				
Break size	Maximum				
Critical flow model	Henry-Fauske (Sub-cooled) / Moody (Two phase)				
Decay heat	1979 ANS Standard +				
Turbine trip	At break				
AC power	LOCA: Loss at breakMSLB: Available				
DC power	Available				
Single failure	PAFS failure (no significant effect to results)				
Low riser level setpoint	Maximum in harsh environment				
SOPM setpoint	Nominal				



- Steady-state calculation

 → error rates of less than 0.001%

 for each operating parameters
- Maximizing initial M/E inventory of NSSS (RCS, secondary side)

[Fig. Core Power]

Event Sequence of LOCA (CLB) Analysis

- Reactor coolant is released into the CV
 - → Pressurization of the CV.
- High containment pressure (HCP) signal
 - → Reactor trip, CV isolation, PAFS actuation
- Riser water level decreases to the low riser level setpoint for PECCS actuation.
- <u>Differential pressure (DP) between RV and CV</u>
 reaches <u>SOPM setpoint.</u>
- Low Riser Level + SOPM → PECCS actuation
 Opening the remaining EDVs and ERVs.
- RCS is cooled to a <u>safe shutdown state through</u> continued actuation of both the PAFS and the PECCS.

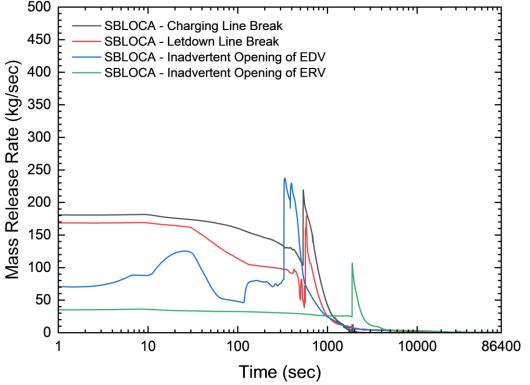
[Table. Event Sequence of LOCA (CLB) Analysis]

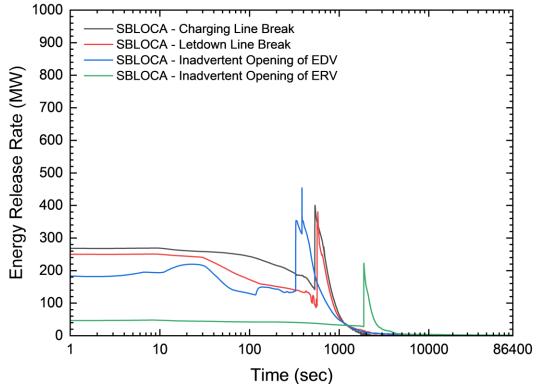
Time (sec)	Sequence of Event		
	 Break occurrence Turbine trip Loss of offsite power (AC power) 		
	CV pressure reaches the HCP setpoint		
	HCP reactor trip signal		
	Reactor trip breaker opening		
	 MSIVs and FIVs closure PAFS actuation (Startup Valve Opening) 		
	Riser water level reaches low level setpoint		
	Low riser level signal		
	RV-CV DP reaches SOPM setpoint		
	PECCS actuation (EDVs and ERVs opening)		
	CV pressure reaches peak pressure (3.85 MPa)		
	Safe shutdown state ()		

- Reactor coolant is released into the CV though the break.
- Heat transfer from the reactor coolant to the CV through the RV wall occurs.
 - Discharge of coolant → <u>loss of CV vacuum</u>
- As the accident progresses, the M/E release rate gradually decreases.
- When the PECCS is actuated, additional M/E is released due to opening of the remaining EDVs and ERVs.

[Fig. Break Mass Release Rate during LOCA(CLB)]

[Fig. PECCS Mass Release Rate during LOCA(CLB)]


[Fig. Heat Transfer from RV to CV during LOCA(CLB)]

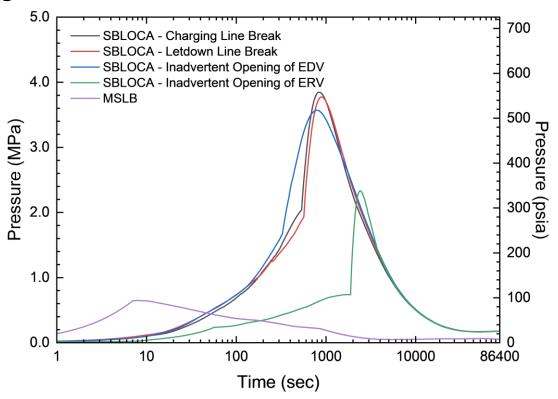


Mass and Energy Release during LOCA Scenarios

- Due to the lower elevation of charging line compared to letdown line, a higher M/E release rate is observed in CLB.
- During <u>IOEDV</u>, reactor coolant is discharged through the <u>EDV as a two-phase mixture</u> (EDVs at the top of the pressurizer).
- During <u>IOERV</u>, the <u>liquid coolant</u> is discharged through the ERV (connected to RV downcomer < normal RCS water level).

[Fig. Break and PECCS Mass Release Rate during LOCA]

[Fig. Break and PECCS Energy Release Rate during LOCA]



CV Response during LOCA Scenarios

- M/E release → Loss of CV vacuum → <u>PCCS condensation</u> + <u>passive heat sink (PHS) condensation</u>
- Condensed water accumulates at the bottom of CV → CV water level increases
- PECCS actuation → CV water is injected into the RV through the ERVs
- M/E (Initiating events) → Additional M/E (PECCS actuation)
 - → CV peak pressure (M/E release < PCCS + PHS cooling)</p>
 - LOCA limiting scenarios : CLB > LLB > IOEDV > IOERV

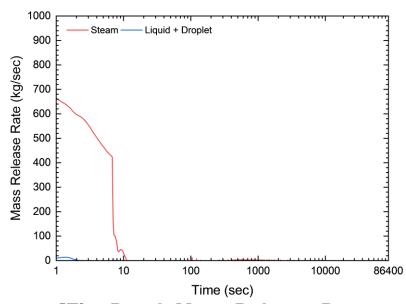
[Fig. CV Peak Pressure and Relevant Reaching Time during LOCA]

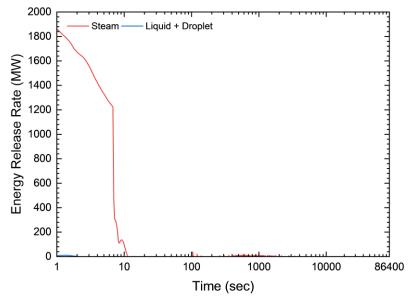
	CV Peak	Reaching Time, sec		
Case	Pressure, MPa	CV Peak Pressure	Low Riser Level	SOPM Setpoint
CLB	<u>3.85</u>	846.4		
LLB	<u>3.77</u>	897.0		
IOEDV	<u>3.57</u>	774.4		
IOERV	<u>2.33</u>	2422.4		

[Fig. CV Pressure during LOCA and MSLB]

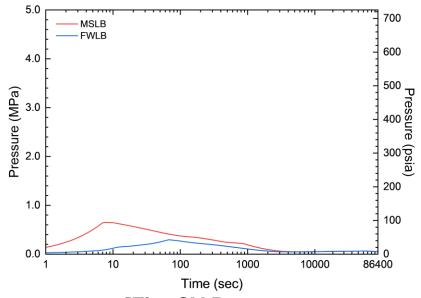
Event Sequence of MSLB Analysis

- Superheated steam is released into the CV
 - → CV pressurization, HCP reactor trip
 - → CV isolation, PAFS actuation
- M/E release completely terminates at 11.2 seconds
 - Unlike the LOCA, the <u>M/E release terminates</u> within a short duration due to Limited inventory of the helical-coiled steam generator (HCSG)
- The RCS is then cooled down to a safe shutdown state solely by PAFS, without PECCS actuation.

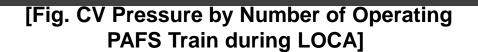

[Table. Event Sequence of MSLB Analysis]



M/E Release and CV Response during MSLB


- In the very early phase, a significant amount of superheated steam M/E is released through the break.
 - Steam discharge occurs simultaneously from both the affected HCSG and the steam header.
- Only a very small amount of <u>liquid and droplet entrainment was observed.</u>
- MSIV closure by HCP reactor trip → blocking steam release from the steam header → rapid decrease in M/E release rate.
- CV peak pressure of MSLB: 0.65 MPa

Time (sec)
[Fig. Break Mass Release Rate during MSLB]


[Fig. Break Energy Release Rate during MSLB]

[Fig. CV Pressure during MSLB and FWLB]

- Sensitivity Study Single Failure
 - PAFS Startup Valve Single Failure
 - LOCA (CLB): PAFS 4-train → PAFS 3-train
 - MSLB: PAFS 4-train → PAFS 3-train

[Fig. CV Pressure by Number of Operating PAFS Train during MSLB]

- Sensitivity Study PECCS
 - PECCS Low Riser Level Setpoint
 - LOCA (CLB) : Max. setpoint → Min. setpoint
 - PECCS SOPM Setpoint
 - LOCA (LLB) : High setpoint → Low setpoint
 - PECCS Number of EDVs

04 Concluding Remarks

M/E Release and CV Response Analyses of i-SMR

LOCA

- Reaching CV peak pressure due to additional M/E release by PECCS actuation following initial M/E release.
- The highest CV peak pressure was observed in the CLB, reaching 3.85 MPa (23% margin to acceptance criteria).

MSLB

- M/E release terminates within a short duration due to **small inventory of HCSG** (CV peak pressure 0.65 MPa)

Future Research

- Development of M/E Release and CV Response Analyses
 - Reliability of non-safety grade power (DC)
 - Development of two step analytical methodology (SPACE-CAP)

Preparation of i-SMR SDA Licensing Process

- Preparation of licensing documents (safety analysis report, technical report)
- More sensitivity studies for answering the RAI

Thank you for your kind attention.

Jisu Kim jisukim@kepco-enc.com

