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KAERI has developed the thermal-hydraulic analysis
code CUPID, a computational multi-physics fluid
dynamics (CMFD) code, which enables to handle both
CFD-scale and component-scale analysis, single-phase
and two-phase simulations, and multi-physics coupling
applications  [1,2]. For practical uses, both
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crucial to CFD code. The MPI based parallelization
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breakthrough in enabling the CUPID code to handle
large scale simulations [1].

In recent, the CUPID code faces to coupling with a
high reliable Monte Carlo neutron physics code,
PRAGMAJ3]. Since the PRAGMA code is utilized on
multi-threads of GPU cards, the CUPID code needs to
be parallelized in a similar manner. Therefore, the
CUPID code has begun to be parallelized using GPU.
This paper discussed the part of GPU-based
parallelization of CUPID and compared computational
performance with single CPU core performance.

2. Methods and Results

2.1 Implementation of GPU-based parallelization on the
CUPID code

The CUPID code primarily consists of a matrix solver;
1) Construct the solver matrix, 2) construct the source
vector, 3) Calculate the model and correlations. The
physical models are mainly contribute to the source
vector, but the interfacial drag and heat transfer models
associate to the solver matrix.
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Fig. 1. The CUPID simulation flow for the single phase
turbulent flow
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the single-phase turbulent flow. As shown in Fig.1, 1)
Matrix solver, 2) Matrix construction, and 3) Source
vector construction are essential part of the CUPID code.
And the numerous physical models and correlations are
added according to the application.

Therefore, we profiled the performance of CUPID
code using representative application and identify the
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and occupancy. Then we set the strategy for
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subroutines which occupy the most computational
resources: 1) Solve pressure matrix, 2) Solver matrix
coefficient, 3) Calculate property and derivative, 4)
Diffusion and convection for implicit method, 5) the
rest of the code. In this paper, the representative
application was single liquid phase turbulent flow in the
rectangular channel.

2.2 GPU-based parallelization of the matrix solver

The original CUPID code adopts the BiCGSTAB
with incomplete LU (iLU) preconditioner to solve the
pressure matrix which denotes ‘Solve pressure matrix’
step in Fig. 1. This subroutine is the most crucial part of
the simulation flow, so that we start GPU porting from
the BICGSTAB solver.

The BiCGSTAB solver include 1) vector reduction, 2)
scalar calculation, 3) vector addition, 4) Matrix-vector
multiplication (Matvec), and 5) Lower-Upper(LU)
operation. Figure 2 shows the example of the coefficient
matrix which should be solved by BiCGSTAB
algorithm.

In this study, we apply the fundamental directive
kernel ‘!$cuf kernel do <<<*,*>>>’ to scalar calculation
and the vector addition subroutines. And, Matvec
calculation and LU operation are parallelized manually
without directive kernel. For the LU operation, the
coloring method was implemented in order to separate
the matrix coefficient from neighboring cells. Figure 2
shows the example of cell coloring and the resultant
coefficient matrix.
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Fig. 2. The colorized cells and the solver matrix coefficients
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Table 1. Comparison of the computational performance for BICGSTAB solver

. iLU MatVec Solver Time(s)

Test case Mesh ~ Numberof  Coloring  preconditioner(s) Time(s) 2LU+2MatVec
type cells level
CPU GPU CPU GPU CPU GPU

VD16 HMTA 3D-S 25,200 2 10 2 3 0.33 13 7
VD16 RBLA 3D-S 63,000 2 95 31 38 4 154 98
VD6 F.D. 3D-S 17,403 2 98 31 32 5 142 105
VD5 ROCOM 3D-U 37,044 4 242 73 136 6 443 179
VD14 _H2P1 3D-U 113,865 4 425 45 282 3 869 132
VD23 WHI14x28 3D-S 13,050 2 90 35 25 5 124 121
VFSI3 N.C. 2D-S 25,600 2 178 54 46 9 252 193
VFS8_Turb3D 2D-S 48,400 2 214 24 58 4 305 85
iSMR protoype mesh 3D-U 15,398,292 6 45,565 1,076 37,689 2 109,609 1,983

Table 1 presents the computational performance
comparison with single CPU core. The results indicate
that the GPU-based parallelization of the BiCGSTAB
solver shows reasonable performance.

2.3 GPU-based parallelization of matrix and source
vector construction

Matrix and source vector construction indicates
calculation of solver matrix elements and the vector
elements. And these elements are formulated by the
diffusion and convection equations of the mass and
energy. The same implement method is applied to this
subroutines: The directive kernel ‘!$cuf kernel do
<<<EFF>>>? s applied in straightforward. The key
aspect of the subroutine is utilizing cell-based variables
within the face-based streaming processor and vice
versa- leveraging face-based variables within the cell-
based streaming processor.

2.4 GPU-based parallelization of model and correlation
calculation

This phase calculates 1) the interfacial drag and heat
transfer coefficients of two-phase, 2) steamtable, and 3)
turbulence model. The explicit velocity calculation also
can be included. This simple subroutines are
parallelized using the directive kernel ‘!Scuf kernel do
<<<*#>>>’ The parallelization is straightforward
because the most formulations have no dependency on
the neighbor cell variables.

3. Conclusions
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In this paper, we have developed the GPU-based
parallelized CUPID code. First, we set the development
strategy using the performance profiling of CUPID. The
most time-consuming subroutines that calculated
BiCGSTAB solver was parallelized in the inital step.
The computational performance was compared with the
single CPU core, and it shows the reasonable
performance. Afterward, parallelization was carried out
step by step: 1) the matrix and vector construction, 2)

model and correlation calculation. As a result, the
performance of certain test cases shows that GPU-based
parallelization of the CUPID code is promising for
enhancing computational speed.
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