제염범위 조정에 따른 제염계수 변화 분석

2025-05-23 송제석

계통 제염의 정의 및 필요성
 국내외 계통 제염 사례 비교
 제염 계수 변화 예측
 결과

5. 결론

1.

계통 제염의 정의 및 필요성

1. 계통 제염의 정의 및 필요성

▶ 크러드 (CRUD)

- ▶ NPP 1차계통 내 흡착된 녹으로, 방사성을 띄기도 함.
- 1차계통 내 생성된 금속성 이온이 냉각재를 따라 이동하여 노심에서 방사화, 재이동한 후 배관 등에 부착

▶ 계통제염

화학적 방식을 사용한 계통 내 방사성 흡착물(방사성 크러드) 의 제거를 통해 해체폐기물의 선량을 감소시키고 해체작업 자의 피폭 선량을 낮추는 작업

▶ 산화환원반응을 이용하며, 옥살산 등을 사용

- ▶ 제염계수(DF)
 - ▶ 크러드 제거 관점에서의 제염 효율성을 나타내는 지표

▶ 제염계수 = <u>제염전방사능재고량</u> 제염후방사능재고량

국내외계통제염사례비교

2. 국내외 계통 제염 사례 비교

원자력발전소	노형	제염 방식	제염계수
Obrigheim	357 MW PWR	HP CORD UV	> 600
Barsebäck	615 MW BWR	HP CORD UV	286 (unit 1) 93 (unit 2)
Maine Yankee	900 MW PWR	DfD	8.7
Connecticut Yankee	560 MW PWR	CORD D UV	17.6
Mihama	860 MW PWR	HP CORD UV	$7.8 \sim 50.2$
Jose Cabrera	150 MW PWR	DfD	13

Kori-1	587 MW PWR	CRI_RW/Decom	?
--------	------------	--------------	---

6

2. 국내외 계통 제염 사례 비교

제염 방식	DfD	HP CORD UV	CRI_RW/ Decom
산화제	KMnO ₄	HMnO ₄ (300 ppm)	HMnO ₄ (200 ppm)
산도조절제	HBF ₄ -		HNO ₃ (2.5 mM)
환원제	$H_2C_2O_4$	H ₂ C ₂ O ₄ (2	000 ppm)
자외선 램프	-	Medium Pressure Lamp (UVB)	High-Power Low-Pressure Lamp (UVC)
사례	호세 카브레라 메인 양키	오브리히하임 베르세베크 코네티컷 양키	고리-1

제염 계수 변화 예측

3. 제염 계수 변화 예측

제염 계수 관계식 가정 전제조건

- ▶ 각사이클의 제염계수는 지수함수적으로 일정한 경향을 보인다.
- 각 제염 사이클에서, 제염 도중의 크러드 재흡착은 무시가능할만큼 적다.
- 계통 제염을 실시할 원자력발전소는 원자로 정지 이후 충분한 시간 이 지났으며, 크러드 내 방사성 핵종은 다른 핵종에 비해 상대적으 로 반감기가 긴 Co-60의 비중이 압도적이다.
- ▶ 사용 데이터:
 - ▶ 오브리히하임 (범위별 국부제염계수)
 - ▶ 베르세베크 (사이클별 제염계수 관계)
 - ▶ 고리-1 (초기 방사능 재고량)

3. 제염계수변화예측

- ▶ 수식화: $DF_{n+1} = (DF_n)^{k_n}$
 - ▶ 각 사이클의 제염 계수는 지수함수적으로 일정한 경향을 보인다.
- $\therefore DF_{total}^{1 \sim n \, cycle} = (DF_1)^{1+k_1+k_1k_2+\dots+k_1k_2\dotsk_n}$

▶ 추가 가정:

▶ 상관 계수 k는 lim kn에서 무한대로 발산하며 lim kn에서 1로 수렴한다.
 ▶ 시행중인 사이클 횟수를 의미하는 n이 증가함에 따라 kn은 연속적으로 감소한다.
 ▶ ∴ kn = 1 + k1-1/nm (위 추가 가정을 만족하는 가장 간단한 식)

3. 제염계수변화예측

바르세베크 2호기 방사능 재고 제거량

사이클	방사능 재고 제거량
1	$1.56 \times 10^{12} Bq$
2	$0.48 \times 10^{12} Bq$
3	$0.10 imes 10^{12} Bq$

바르세베크 2호기 제염 프로파일

1.243554 \mathbf{k}_1 ▶ 총 DF: 93 1.050051 **k**₂ ▶ 총 제염 사이클 횟수: 3 \mathbf{k}_{3} 1.019835 $\int DF_1 = \frac{A_0}{A_1} = 3.585945944 \approx 3.59$ $\mathbf{k_4}$ 1.010286 • $\therefore \left\{ DF_2 = \frac{A_1}{A_2} = 4.894179880 \approx 4.89 \right\}$ $DF_3 = \frac{A_2}{A_2} = 5.299065340 \approx 5.30$ ▶ ∴ m = 2.282766 $\bigstar DF_{n+1} = (DF_n)^{k_n}$ $DF_{total}^{1 \sim n \, cycle} = (DF_1)^{1+k_1+k_1k_2+\dots+k_1k_2\dotsk_n}$

3. 제염계수변화예측

▶ 전제 조건:

- ▶ 오브리히하임의 보조계통은 CVCS와 RHRS만을 포함한다.
- 고리 1호기와 오브리히하임의 CVCS 방사능 재고량 대비 RHRS 방사능 재고량 비율은 동일하다.

▶ 오브리히하임 원자력 발전소의 국부 DF (총 4 cycle 기준)

PZR	RCS Hot Leg A	RCS Cold Leg A	RCS CX Leg A	SG Chamber A	SG U-tube A	CVCS
13	136	27	29	60	1597	40
PZR Surge Line	RCS Hot Leg B	RCS Cold Leg B	RCS CX Leg B	SG Chamber B	SG U-tube B	RHRS
26	53	26	36	60	1220	12

3. 제염계수변화예측

Name	Total DF	DF ₁	DF ₂	DF ₃	DF ₄
PZR	13	1.69	1.92	1.99	2.01
PZR Surge Line	26	1.95	2.29	2.39	2.43
RCS Hot Leg A	136	2.74	3.50	3.72	3.82
RCS Hot Leg B	53	2.26	2.75	2.89	2.95
RCS Cold Leg A	27	1.96	2.32	2.42	2.46
RCS Cold Leg B	26	1.95	2.29	2.39	2.43
RCP CX Leg A	29	1.99	2.36	2.46	2.51
RCP CX Leg B	36	2.08	2.49	2.61	2.66
SG Chamber A	60	2.31	2.84	2.99	3.06
SG Chamber B	60	2.31	2.84	2.99	3.06
SG U-tube A	1597	4.53	6.55	7.19	7.48
SG U-tube B	1220	4.29	6.11	6.69	6.95
CVCS	40	2.13	2.56	2.68	2.73
RHRS	12	1.65	1.86	1.92	1.95

3. 제염계수변화예측

Decon. Scope	Co-58	Co-60	Zn-65
PZR	2.5197E+11	2.0289E+12	1.9323E+11
PZR Surge Line	6.7096E+08	5.4026E+09	5.1455E+08
RCS Hot Leg A	3.2270E+09	2.5984E+10	2.4747E+09
RCS Hot Leg B	4.6100E+09	3.7120E+10	3.5353E+09
RCS Cold Leg A	1.8379E+09	1.4799E+10	1.4095E+09
RCS Cold Leg B	1.8379E+09	1.4799E+10	1.4095E+09
RCP CX Leg A	3.0988E+10	2.4952E+11	2.3764E+10
RCP CX Leg B	8.8538E+09	7.1292E+10	6.7898E+09
SG Chamber A	4.2236E+10	3.4009E+11	3.2390E+10
SG Chamber B	4.3925E+10	3.5369E+11	3.3686E+10
SG U-tube A	?	?	-
SG U-tube B	?	?	-
CVCS	3.0999E+10	2.4961E+11	2.3773E+10
RHRS	5.8765E+09	4.7318E+10	4.5066E+09

3. 제염계수변화예측

 $\begin{cases} 2017 June \ 01 \ sum \ of \ Co-58 \ and \ Co-60 \ inventory = 1.91 \times 10^{13} \ Bq \\ 2021 \ July \ 07 \ sum \ of \ Co-58 \ and \ Co-60 \ inventory = 5.88 \times 10^{12} \ Bq \end{cases}$

 $\begin{array}{l} \mbox{if defining as} \\ \left\{ \begin{array}{l} 2017 \ total \ inventory = A_{2017} \\ 2021 \ total \ inventory = A_{2021} \\ 2017 \ Co-58 \ inventory = x_{2017} \\ 2017 \ Co-60 \ inventory = y_{2017} \\ Half-life \ of \ Co-58 = T_{Co-58} = 0.1940 \ years \\ Half-life \ of \ Co-60 = T_{Co-60} = 5.2714 \ years \\ Elapsed \ time = D = 1497 \ days \end{array} \right.$

$$\therefore \begin{cases} x_{2017} = 9.0206 \times 10^{12} Bq \\ y_{2017} = 1.0079 \times 10^{13} Bq \end{cases} (2017 \ Co - 58 \ inventory) (2017 \ Co - 60 \ inventory)$$

3. 제염계수변화예측

Decon. Scope	Со-58 Со-60		Zn-65
PZR	2.5197E+11	2.0289E+12	1.9323E+11
PZR Surge Line	6.7096E+08	5.4026E+09	5.1455E+08
RCS Hot Leg A	3.2270E+09	2.5984E+10	2.4747E+09
RCS Hot Leg B	4.6100E+09	3.7120E+10	3.5353E+09
RCS Cold Leg A	1.8379E+09	1.4799E+10	1.4095E+09
RCS Cold Leg B	1.8379E+09	1.4799E+10	1.4095E+09
RCP CX Leg A	3.0988E+10	2.4952E+11	2.3764E+10
RCP CX Leg B	8.8538E+09	7.1292E+10	6.7898E+09
SG Chamber A	4.2236E+10	3.4009E+11	3.2390E+10
SG Chamber B	4.3925E+10	3.5369E+11	3.3686E+10
SG U-tube A	?	?	-
SG U-tube B	?	?	-
CVCS	3.0999E+10	2.4961E+11	2.3773E+10
RHRS	5.8765E+09	4.7318E+10	4.5066E+09

Decon. Scope	Co-58	Co-60	Zn-65
PZR	2.5197E+11	2.0289E+12	1.9323E+11
PZR Surge Line	6.7096E+08	5.4026E+09	5.1455E+08
RCS Hot Leg A	3.2270E+09	2.5984E+10	2.4747E+09
RCS Hot Leg B	4.6100E+09	3.7120E+10	3.5353E+09
RCS Cold Leg A	1.8379E+09	1.4799E+10	1.4095E+09
RCS Cold Leg B	1.8379E+09	1.4799E+10	1.4095E+09
RCP CX Leg A	3.0988E+10	2.4952E+11	2.3764E+10
RCP CX Leg B	8.8538E+09	7.1292E+10	6.7898E+09
SG Chamber A	4.2236E+10	3.4009E+11	3.2390E+10
SG Chamber B	4.3925E+10	3.5369E+11	3.3686E+10
SG U-tube A	9.0206E+12	1.0079E+13	-
SG U-tube B	9.0206E+12	1.0079E+13	-
CVCS	3.0999E+10	2.4961E+11	2.3773E+10
RHRS	5.8765E+09	4.7318E+10	4.5066E+09

3. 제염계수변화예측

Decon. Scope	Co-58	Со-60	Zn-65
PZR	2.5197E+11	2.0289E+12	1.9323E+11
PZR Surge Line	6.7096E+08	5.4026E+09	5.1455E+08
RCS Hot Leg A	3.2270E+09	2.5984E+10	2.4747E+09
RCS Hot Leg B	4.6100E+09	3.7120E+10	3.5353E+09
RCS Cold Leg A	1.8379E+09	1.4799E+10	1.4095E+09
RCS Cold Leg B	1.8379E+09	1.4799E+10	1.4095E+09
RCP CX Leg A	3.0988E+10	2.4952E+11	2.3764E+10
RCP CX Leg B	8.8538E+09	7.1292E+10	6.7898E+09
SG Chamber A	4.2236E+10	3.4009E+11	3.2390E+10
SG Chamber B	4.3925E+10	3.5369E+11	3.3686E+10
SG U-tube A	9.0206E+12	1.0079E+13	-
SG U-tube B	9.0206E+12	1.0079E+13	-
CVCS	3.0999E+10	2.4961E+11	2.3773E+10
RHRS	5.8765E+09	4.7318E+10	4.5066E+09

Scope	Co-58	Co-60	Zn-65	Total
Total	2.52E+02	9.43E+12	4.85E+08	9.44E+12
PZR	4.55E+01	8.89E+11	2.86E+08	8.89E+11
PZR Surge Line	1.21E-01	2.36E+09	7.62E+05	2.37E+09
RCS Hot Leg A	5.83E-01	1.14E+10	3.66E+06	1.14E+10
RCS Hot Leg B	8.32E-01	1.63E+10	5.23E+06	1.63E+10
RCS Cold Leg A	3.32E-01	6.48E+09	2.09E+06	6.48E+09
RCS Cold Leg B	3.32E-01	6.48E+09	2.09E+06	6.48E+09
RCP CX Leg A	5.59E+00	1.09E+11	3.52E+07	1.09E+11
RCP CX Leg B	1.60E+00	3.12E+10	1.01E+07	3.12E+10
SG Chamber A	7.63E+00	1.49E+11	4.79E+07	1.49E+11
SG Chamber B	7.93E+00	1.55E+11	4.99E+07	1.55E+11
SG U-tube A	8.73E+01	3.96E+12	-	3.96E+12
SG U-tube B	8.73E+01	3.96E+12	-	3.96E+12
CVCS	5.60E+00	1.09E+11	3.52E+07	1.09E+11
RHRS	1.06E+00	2.07E+10	6.67E+06	2.07E+10

제염 계수 변화 예측 3.

18

4. 결과

▶ 방사능 재고량도 많고 제염 계수도 큰 증기발생기의 방사능 재고 제거량이 큼.

▶ 압력관 측에 연결된 SG A의 제염 계수가 조금 더 높음.

- ▶ SG A U-tube 제염계수: 213
- ▶ SG B U-tube 제염계수: 176

▶ 방사능 재고량이 상대적으로 많음에도 가압기의 방사능 재고 제거량은 낮음

4. 결과 시나리오: 3 사이클 전계통 제염

Decon. Scope	DF	Initial Inventory, Bq	Inventory before Decon., Bq	Inventory after Decon., Bq	Final Inventory, Bq
Kori-1 RCS total	42.9713	4.2393.E+13	9.4353.E+12	2.1957.E+11	2.1287.E+11
PZR	6.4569	2.4741.E+12	8.8897.E+11	1.3768.E+11	1.3347.E+11
PZR Surge Line	10.6887	6.5881.E+09	2.3672.E+09	2.2146.E+08	2.1470.E+08
RCS Hot Leg A	35.5996	3.1686.E+10	1.1385.E+10	3.1981.E+08	3.1004.E+08
RCS Hot Leg B	21.7615	4.5265.E+10	1.6264.E+10	7.4738.E+08	7.2455.E+08
RCS Cold Leg A	10.9861	1.8046.E+10	6.4842.E+09	5.9022.E+08	5.7219.E+08
RCS Cold Leg B	10.6887	1.8046.E+10	6.4842.E+09	6.0664.E+08	5.8811.E+08
RCP CX Leg A	11.5721	3.0427.E+11	1.0933.E+11	9.4475.E+09	9.1589.E+09
RCP CX Leg B	13.5424	8.6936.E+10	3.1237.E+10	2.3066.E+09	2.2361.E+09
SG Water Chamber A	19.6344	4.1472.E+11	1.4901.E+11	7.5893.E+09	7.3575.E+09
SG Water Chamber B	19.6344	4.3130.E+11	1.5497.E+11	7.8928.E+09	7.6517.E+09
SG U-tube A	213.4749	1.9100.E+13	3.9643.E+12	1.8571.E+10	1.8004.E+10
SG U-tube B	175.5124	1.9100.E+13	3.9643.E+12	2.2587.E+10	2.1899.E+10
CVCS	14.5616	3.0438.E+11	1.0937.E+11	7.5106.E+09	7.2812.E+09
RHRS	5.9143	5.7701.E+10	2.0732.E+10	3.5055.E+09	3.3984.E+09

4. 결과 시나리오: 2 사이클 전계통 제염 후 1 사이클 양 증기발생기 제외 제염

Decon. Scope	DF	Initial Inventory, Bq	Inventory before Decon., Bq	Inventory after Decon., Bq	Final Inventory, Bq
Kori-1 RCS total	19.0992	4.2393.E+13	9.4353.E+12	4.9402.E+11	4.7894.E+11
PZR	6.4569	2.4741.E+12	8.8897.E+11	1.3768.E+11	1.3347.E+11
PZR Surge Line	10.6887	6.5881.E+09	2.3672.E+09	2.2146.E+08	2.1470.E+08
RCS Hot Leg A	35.5996	3.1686.E+10	1.1385.E+10	3.1981.E+08	3.1004.E+08
RCS Hot Leg B	21.7615	4.5265.E+10	1.6264.E+10	7.4738.E+08	7.2455.E+08
RCS Cold Leg A	10.9861	1.8046.E+10	6.4842.E+09	5.9022.E+08	5.7219.E+08
RCS Cold Leg B	10.6887	1.8046.E+10	6.4842.E+09	6.0664.E+08	5.8811.E+08
RCP CX Leg A	11.5721	3.0427.E+11	1.0933.E+11	9.4475.E+09	9.1589.E+09
RCP CX Leg B	13.5424	8.6936.E+10	3.1237.E+10	2.3066.E+09	2.2361.E+09
SG Water Chamber A	6.5663	4.1472.E+11	1.4901.E+11	2.2693.E+10	2.2000.E+10
SG Water Chamber B	6.5663	4.3130.E+11	1.5497.E+11	2.3601.E+10	2.2880.E+10
SG U-tube A	29.6747	1.9100.E+13	3.9643.E+12	1.3359.E+11	1.2952.E+11
SG U-tube B	26.2200	1.9100.E+13	3.9643.E+12	1.5120.E+11	1.4659.E+11
CVCS	14.5616	3.0438.E+11	1.0937.E+11	7.5106.E+09	7.2812.E+09
RHRS	5.9143	5.7701.E+10	2.0732.E+10	3.5055.E+09	3.3984.E+09

4. 결과 시나리오: 2 사이클 전계통 제염 후 1 사이클 증기발생기 A 제외 제염

Decon. Scope	DF	Initial Inventory, Bq	Inventory before Decon., Bq	Inventory after Decon., Bq	Final Inventory, Bq
Kori-1 RCS total	26.9812	4.2393.E+13	9.4353.E+12	3.4970.E+11	3.3903.E+11
PZR	6.4569	2.4741.E+12	8.8897.E+11	1.3768.E+11	1.3347.E+11
PZR Surge Line	10.6887	6.5881.E+09	2.3672.E+09	2.2146.E+08	2.1470.E+08
RCS Hot Leg A	35.5996	3.1686.E+10	1.1385.E+10	3.1981.E+08	3.1004.E+08
RCS Hot Leg B	21.7615	4.5265.E+10	1.6264.E+10	7.4738.E+08	7.2455.E+08
RCS Cold Leg A	10.9861	1.8046.E+10	6.4842.E+09	5.9022.E+08	5.7219.E+08
RCS Cold Leg B	10.6887	1.8046.E+10	6.4842.E+09	6.0664.E+08	5.8811.E+08
RCP CX Leg A	11.5721	3.0427.E+11	1.0933.E+11	9.4475.E+09	9.1589.E+09
RCP CX Leg B	13.5424	8.6936.E+10	3.1237.E+10	2.3066.E+09	2.2361.E+09
SG Water Chamber A	6.5663	4.1472.E+11	1.4901.E+11	2.2693.E+10	2.2000.E+10
SG Water Chamber B	19.6344	4.3130.E+11	1.5497.E+11	7.8928.E+09	7.6517.E+09
SG U-tube A	29.6747	1.9100.E+13	3.9643.E+12	1.3359.E+11	1.2952.E+11
SG U-tube B	175.5124	1.9100.E+13	3.9643.E+12	2.2587.E+10	2.1899.E+10
CVCS	14.5616	3.0438.E+11	1.0937.E+11	7.5106.E+09	7.2812.E+09
RHRS	5.9143	5.7701.E+10	2.0732.E+10	3.5055.E+09	3.3984.E+09

4. 결과 시나리오: 2 사이클 전계통 제염 후 1 사이클 증기발생기 B 제외 제염

Decon. Scope	DF	Initial Inventory, Bq	Inventory before Decon., Bq	Inventory after Decon., Bq	Final Inventory, Bq
Kori-1 RCS total	25.9291	4.2393.E+13	9.4353.E+12	3.6389.E+11	3.5278.E+11
PZR	6.4569	2.4741.E+12	8.8897.E+11	1.3768.E+11	1.3347.E+11
PZR Surge Line	10.6887	6.5881.E+09	2.3672.E+09	2.2146.E+08	2.1470.E+08
RCS Hot Leg A	35.5996	3.1686.E+10	1.1385.E+10	3.1981.E+08	3.1004.E+08
RCS Hot Leg B	21.7615	4.5265.E+10	1.6264.E+10	7.4738.E+08	7.2455.E+08
RCS Cold Leg A	10.9861	1.8046.E+10	6.4842.E+09	5.9022.E+08	5.7219.E+08
RCS Cold Leg B	10.6887	1.8046.E+10	6.4842.E+09	6.0664.E+08	5.8811.E+08
RCP CX Leg A	11.5721	3.0427.E+11	1.0933.E+11	9.4475.E+09	9.1589.E+09
RCP CX Leg B	13.5424	8.6936.E+10	3.1237.E+10	2.3066.E+09	2.2361.E+09
SG Water Chamber A	19.6344	4.1472.E+11	1.4901.E+11	7.5893.E+09	7.3575.E+09
SG Water Chamber B	6.5663	4.3130.E+11	1.5497.E+11	2.3601.E+10	2.2880.E+10
SG U-tube A	213.4749	1.9100.E+13	3.9643.E+12	1.8571.E+10	1.8004.E+10
SG U-tube B	26.2200	1.9100.E+13	3.9643.E+12	1.5120.E+11	1.4659.E+11
CVCS	14.5616	3.0438.E+11	1.0937.E+11	7.5106.E+09	7.2812.E+09
RHRS	5.9143	5.7701.E+10	2.0732.E+10	3.5055.E+09	3.3984.E+09

S1	1 3 FSD or 4 FSD				Total	DE by Sc	onario		
S 2	S2 2 FSD + 1 or 2 cycle without both SG A and B		IOLAI DE DY SCENA						
S 3	S3 2 FSD + 1 or 2 cycle without SG A		60						
S4	S4 2 FSD + 1 or 2 cycle without SG B		<u>Ц</u> 10		= 105				
	총 DF	2FSD + 1C	2FSD + 2C	0 40 					
	S1	43	105						
	S2	19	23	0	S1	S2	S3	S4	
	S3	27	39	2 FSD + 1 Cycle with exclusion					
	S4	26	36	2 FSD + 2 Cycles with exclusion					

- 3 사이클 이전에 증기발생기를 하나 이상 제외할 경우 어떠한 경우에도 총 DF는 30 보다 낮음
- ▶ 3 사이클에서 두 증기발생기를 제외할 경우 총 DF는 어떤 경우에도 30보다 낮음
- ▶ 증기발생기 A를 제외하는 쪽이 증기발생기 B를 제외하는 경우보다 총 DF가 높음

4. 결과

시나리오 구분	사이클수	총 제염계수
3-Cycle FSD	3	42.97
2-Cycle FSD + 1-Cycle Excluding both SGs	3	19.10
2-Cycle FSD + 2-Cycle Excluding both SGs	4	23.01
2-Cycle FSD + 1-Cycle Excluding SG A	3	26.98
2-Cycle FSD + 1-Cycle Excluding SG B	3	25.93
2-Cycle FSD + 2-Cycle Excluding SG A	4	39.13
2-Cycle FSD + 2-Cycle Excluding SG B	4	36.47

결론

5. 결론

▶ 오브리히하임, 바르세베크 2호기, 고리 1호기를 기반으로 분석한 결과,

▶ 제염 후 방사능 재고량이 가장 많은 구성요소는 가압기이다.

▶ 총 DF 값은 높은 방사능 재고량을 가진 구성요소를 제염 범위에 포함하는지 여부에 큰 영향을 받는다.

▶ 양 증기발생기를 제외하는 경우, 사이클 횟수를 늘리더라도 총 제염 계수는 30을 넘지 못한다.

▶ 단일 증기발생기를 제외하는 경우, 1 사이클 더 제염을 실시하면 총 제염 계수는 30을 넘는다.

▶ 단일 증기발생기를 제외하는 경우, 가압기 측 증기발생기 A를 제외할 때, 총 제염 계수가 더 높다.

▶ 증기발생기 A U-tube가 국부 제염 계수가 더 높음에도 증기발생기 A를 제외할 때 총 제염 계수가 더 높다

▶ 반드시 국부 제염 계수가 높은 구성 요소를 우선 제염한다고 해서 총 제염 계수가 더 높아지지는 않음

▶ 통합적 분석: ▶ 제역 용액

5. 결론

제염 용액 사용량
폐수지 및 폐필터 양
제염 작업에서의 작업자 피폭량
제염 시나리오에 따른 비용.

고리 1호기 실측 데이터 반영.
타 원자로 노형 적용

석: 애 시 요 라

Future work

