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Introduction
Exploring Physics-Informed Neural Networks as an Innovative Approach for 
Reactor Core Analysis.

Moving Beyond Traditional Numerical Methods to Address Computational 
Challenges in Nuclear Engineering Design and Safety Assessment.
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Research Motivation
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Computational Challenges in Nuclear Engineering

Human Machine

𝑡

Artificial intelligent
(LLM, Agent, etc.)

Expert worker

Understanding subject
area documentation

Predict and control with 
virtual simulation

Analyze and respond to 
real-time sensor data

• Reduce & prevent human error,
• More complicated & efficient operation,
• Exploring future plant design, etc.

Final decision
Explaining AI



Research Motivation

2025/5/22 The Korean Nuclear Society Spring Meeting 3

Computational Challenges in Nuclear Engineering
High-speed nuclear reactor analysis is necessary for virtual reactor technology. 
However, conventional analysis methods are limited in their ability perform high-speed simulations.
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Objectives and Approach
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Combining Physics with Deep Learning

Probabilistic solution
(Monte-Carlo, etc.)

Deterministic solution
(FEM, FDM, etc.)

Solving discretized forms of governing 
equations with mathematical rigor

• Based on spatial and energy discretization 
of transport/diffusion equations

• Provides continuous flux distributions 
with guaranteed convergence

• Widely established in industry and 
regulatory frameworks

Simulating individual neutron behavior 
through stochastic sampling

• Based on tracking neutron interactions 
through random number sampling

• Minimal approximations in physics; 
considered "exact" reference solution

• Handles complex geometries and 
detailed physics with high fidelity
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Combining Physics with Deep Learning

Probabilistic solution
(Monte-Carlo, etc.)

Machine learning solution
(PINN, etc.)

Deterministic solution
(FEM, FDM, etc.)

Solving discretized forms of governing 
equations with mathematical rigor

• Based on spatial and energy discretization 
of transport/diffusion equations

• Provides continuous flux distributions 
with guaranteed convergence

• Widely established in industry and 
regulatory frameworks

Simulating individual neutron behavior 
through stochastic sampling

• Based on tracking neutron interactions 
through random number sampling

• Minimal approximations in physics; 
considered "exact" reference solution

• Handles complex geometries and 
detailed physics with high fidelity

Embedding physical laws into neural 
network architectures

• Since PINN embeds physics, it is more 
reliable than pure data-driven methods 

• Offers continuous, differentiable 
solutions with adaptive resolution 
capability

• Emerging approach with potential for 
computational efficiency at scale

PINN combine the mathematical rigor of physical laws with the flexibility and computational advantages of neural networks, offering
a promising middle ground between traditional deterministic methods and Monte Carlo simulations.

The key value proposition lies in providing continuous, parameterized solutions that facilitate rapid design exploration, enable seamless data 
fusion, and potentially reduce computational burden for specific reactor analysis applications without sacrificing essential physics fidelity.



Methodology
Developing a Hybrid PINN Framework that Integrates Physical Constraints 
with Neural Network Flexibility.

Incorporating Prior FDM Solutions and Rayleigh Quotient Formulation to 
Enhance Training Stability and Solution Accuracy.

Tailoring Network Architecture for the Complexity of Neutron Diffusion 
Eigenvalue Problems.
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Fundamentals of PINN

PINN fundamentally operate by incorporating differential equations directly into the neural network's loss 
function, enabling the model to learn solutions that simultaneously fit available data and satisfy governing 
physical laws. 
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Basic principle of Physics-Informed Neural Network
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PINN for solving diffusion equation

• For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:

• The MLP model receives two-dimensional coordinate values as input.

• Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve 
the two-group neutron diffusion equation.

• In order to accurately and stably calculate the neutron distribution and effective multiplication factor 𝑘𝑒𝑓𝑓, we utilize a 
combination of pre-calculation using FDM and the Rayleigh quotients method.
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Embedding Governing Equations

−∇ ⋅ 𝐷1 Ԧ𝑟 ∇𝑢 + Σ𝑎,1 Ԧ𝑟 + Σ𝑠,1→2 Ԧ𝑟 𝑢

=
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𝜈Σ𝑓,1 Ԧ𝑟 𝑢 + 𝜈Σ𝑓,2 Ԧ𝑟 𝑣

• Fast neutrons

• Thermal neutrons
𝑢 = 𝜙1 𝑥, 𝑦
𝑣 = 𝜙2 𝑥, 𝑦

When the 2D neutron 
distribution is as follows,
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Each neural net 
model represents a 
neutron distribution

• Boundary conditions

−∇ ⋅ 𝐷2 Ԧ𝑟 ∇𝑣 + Σ𝑎,2 Ԧ𝑟 𝑣 = Σ𝑠,1→2 Ԧ𝑟 𝑢
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PINN for solving diffusion equation
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Integrating Physical Constraints using FDM pre-calculation
• For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:

• The MLP model receives two-dimensional coordinate values as input.
• Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve 

the two-group neutron diffusion equation.
• In order to accurately and stably calculate the neutron distribution and effective multiplication factor 𝑘𝑒𝑓𝑓, we utilize 

a combination of pre-calculation using FDM and the Rayleigh quotients method.

Loss function
𝒥 𝜃 = 𝒥𝑃𝐷𝐸 𝜃 + 𝒥𝐵𝐶 𝜃 + 𝒥𝑝𝑟𝑖𝑜𝑟 𝜃

This loss function indicates that the task is to find a DNN model that outputs values satisfying the 
neutron diffusion equation (PDE), the desired geometric conditions (BC), and the pre-calculated 
FDM results (Prior) for all points in the two-dimensional domain.

𝒥𝑃𝐷𝐸 𝜃 =
1

𝑁


𝑖=1

𝑁

𝐹𝑟𝑒𝑠,𝑓𝑎𝑠𝑡
2
+ 𝐹𝑟𝑒𝑠,𝑡ℎ𝑒𝑟𝑚𝑎𝑙

2
𝒥𝑝𝑟𝑖𝑜𝑟 𝜃 = 𝛼
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𝑀
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2
+ 𝜙2 Ԧ𝑟𝑗 − 𝜙2,𝐹𝐷𝑀 Ԧ𝑟𝑗

2

𝒥𝑝𝑟𝑖𝑜𝑟 𝜃 =
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𝐾
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𝐾

𝜙1 𝑥𝑖,𝑝𝑟𝑖𝑜𝑟 , 𝑦𝑖,𝑝𝑟𝑖𝑜𝑟 − 𝜙1,𝐹𝐷𝑀 𝑥𝑖,𝑝𝑟𝑖𝑜𝑟 , 𝑦𝑖,𝑝𝑟𝑖𝑜𝑟
2
+ 𝜙2 𝑥𝑖,𝑝𝑟𝑖𝑜𝑟 , 𝑦𝑖,𝑝𝑟𝑖𝑜𝑟 − 𝜙2,𝐹𝐷𝑀 𝑥𝑖,𝑝𝑟𝑖𝑜𝑟 , 𝑦𝑖,𝑝𝑟𝑖𝑜𝑟
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Mathematical Formulation of Hybrid PINN
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Calculate k-effective with Rayleigh quotients method
• For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:

• The MLP model receives two-dimensional coordinate values as input.
• Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve 

the two-group neutron diffusion equation.
• In order to accurately and stably calculate the neutron distribution and effective multiplication factor 𝑘𝑒𝑓𝑓, we utilize 

a combination of pre-calculation using FDM and the Rayleigh quotients method.

To ensure the reliability of the inference of the core multiplier 𝑘𝑒𝑓𝑓 value and to provide a solid mathematical 

and background for the results, we propose a hybrid method that calculates 𝑘𝑒𝑓𝑓 using the Rayleigh 

Quotients method applied to the inferred neutron distribution.

𝑘𝑒𝑓𝑓 =
𝜙, 𝑭𝜙

𝜙,𝑴𝜙
=
σ𝑖 𝜙1

𝑖 ⋅ 𝜈Σ𝑓1
𝑖 ⋅ 𝜙1

𝑖 + 𝜙2
𝑖 ⋅ 𝜈Σ𝑓2

𝑖 ⋅ 𝜙2
𝑖

σ𝑖 𝜙1
𝑖 ⋅ 𝑀1

𝑖 + 𝜙2
𝑖 ⋅ 𝑀2

𝑖

−∇ ⋅ 𝐷1∇ + Σ𝑎1 + Σ𝑠12 0
−Σ𝑠12 −∇ ⋅ 𝐷2∇ + Σ𝑎2

𝜙1
𝜙2

=
1

𝑘𝑒𝑓𝑓

𝜈Σ𝑓1 𝜈Σ𝑓2
0 0

𝜙1
𝜙2

𝑴𝜙 =
1

𝑘𝑒𝑓𝑓
𝑭𝜙

*𝑀1 = Σ𝑎1𝜙1 − ∇ ⋅ 𝐷1∇𝜙1 + Σ𝑠12𝜙1
𝑀2 = Σ𝑎2𝜙2 − ∇ ⋅ 𝐷2∇𝜙2 − Σ𝑠12𝜙1



Results & Conclusion
Comparative Analysis of Flux Distributions and K-effective Calculations 
Across FEM, Standard PINN, and Hybrid PINN Methodologies.

Quantifying Performance Improvements at Material Interfaces and 
Convergence Characteristics.

Evaluating Computational Efficiency and Accuracy Trade-offs for Practical 
Reactor Physics Applications.
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Benchmark Problem
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2D Reactor Configuration with Multiple Fuel Regions

Region Material
𝑫𝟏

(cm)
𝑫𝟐

(cm)
𝚺𝒂,𝟏

(cm-1)
𝚺𝒂,𝟐

(cm-1)
𝚺𝒂,𝟏→𝟐
(cm-1)

𝝂𝚺𝒇,𝟏
(cm-1)

𝝂𝚺𝒇,𝟐
(cm-1)

Fuel 1 1.2670 0.3540 0.0121 0.1210 0.0241 0.0085 0.1851

Fuel 2 1.2800 0.4000 0.0100 0.1000 0.0160 0.0060 0.1500

Reflector 1.1300 0.1660 0.0004 0.0200 0.0493 0.0000 0.0000

𝑘𝑒𝑓𝑓 = 1.14233



Benchmark Problem
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Example flow diagram solving benchmark problem

FDM
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Example flow diagram solving benchmark problem

FDM
Ex) 17x17, 𝑘𝑒𝑓𝑓,𝐹𝐷𝑀 = 1.76059



Benchmark Problem
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Example flow diagram solving benchmark problem

FDM PINN

𝒥 𝜃 = 𝒥𝑃𝐷𝐸 𝜃 + 𝒥𝐵𝐶 𝜃 + 𝒥𝑝𝑟𝑖𝑜𝑟 𝜃

Ex) 17x17, 𝑘𝑒𝑓𝑓,𝐹𝐷𝑀 = 1.76059



Benchmark Problem
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Example flow diagram solving benchmark problem

FDM PINN

𝒥 𝜃 = 𝒥𝑃𝐷𝐸 𝜃 + 𝒥𝐵𝐶 𝜃 + 𝒥𝑝𝑟𝑖𝑜𝑟 𝜃

Ex) 17x17, 𝑘𝑒𝑓𝑓,𝐹𝐷𝑀 = 1.76059

𝑘𝑒𝑓𝑓 = 1.14497



Hybrid PINN Training Results
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FEM PINN Hybrid PINN

𝐤𝐞𝐟𝐟 1.14233 1.04128 1.14497

Error 
( 𝐩𝐜𝐦 )

- 10105 264

Time < 30 sec < 10 min < 10 min

K-effective AnalysisNeutron Flux comparison



Conclusions

• We are attempting a deep learning PINN-based approach for high-precision, high-
speed core analysis methods for next-generation nuclear reactor research and 
development.

• A hybrid strategy of training PINN using prior information obtained from rough FDM 
calculations to improve the learning stability of deep learning models and derive 
physically and mathematically meaningful results.
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Summary

Limitations and Future works
• In core analysis involving a wide domain and complex shapes and physics, obtaining 

prior information using FDM can act as a bottleneck.

• Conduct future research by refining the methodology to make it more versatile and 
conducting verification using diverse and practical benchmark problems.



Thank you
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