Solving Neutron Diffusion Equations Using
Physics-Informed Neural Networks:
Performance Analysis Against Traditional FEM

Applied Artificial Intelligence Section, KAERI
Yohan Lee, Byoungil Jeon*, Yonggyun Yu

*corresponding author:
bijeon@kaeri.re.kr




Introduction

2025/5/22

Exploring Physics-Informed Neural Networks as an Innovative Approach for
Reactor Core Analysis.

Moving Beyond Traditional Numerical Methods to Address Computational
Challenges in Nuclear Engineering Design and Safety Assessment.
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Research Motivation

Computational Challenges in Nuclear Engineering
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Research Motivation

Computational Challenges in Nuclear Engineering

High-speed nuclear reactor analysis is necessary for virtual reactor technology.
However, conventional analysis methods are limited in their ability perform high-speed simulations.
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Objectives and Approach L en |
:g:@l';e.{cﬁq
Combining Physics with Deep Learning
Probabilistic solution Deterministic solution
(Monte-Carlo, etc.) (FEM, FDM, etc.)
Simulating individual neutron behavior Solving discretized forms of governing
through stochastic sampling equations with mathematical rigor
« Based on tracking neutron interactions - Based on spatial and energy discretization
through random number sampling of transport/diffusion equations
«  Minimal approximations in physics; « Provides continuous flux distributions
considered "exact" reference solution with guaranteed convergence
« Handles complex geometries and « Widely established in industry and
detailed physics with high fidelity regulatory frameworks
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Objectives and Approach L en |
\%‘:@I;ﬂcﬁq
Combining Physics with Deep Learning
Probabilistic solution Machine learning solution Deterministic solution
(Monte-Carlo, etc.) (PINN, etc.) (FEM, FDM, etc.)
Simulating individual neutron behavior Embedding physical laws into neural Solving discretized forms of governing
through stochastic sampling network architectures equations with mathematical rigor
« Based on tracking neutron interactions « Since PINN embeds physics, it is more « Based on spatial and energy discretization
through random number sampling reliable than pure data-driven methods of transport/diffusion equations
« Minimal approximations in physics; « Offers continuous, differentiable « Provides continuous flux distributions
considered "exact" reference solution solutions with adaptive resolution with guaranteed convergence
« Handles complex geometries and capability « Widely established in industry and
detailed physics with high fidelity « Emerging approach with potential for regulatory frameworks

computational efficiency at scale

PINN combine the mathematical rigor of physical laws with the flexibility and computational advantages of neural networks, offering
a promising middle ground between traditional deterministic methods and Monte Carlo simulations.

The key value proposition lies in providing continuous, parameterized solutions that facilitate rapid design exploration, enable seamless data
fusion, and potentially reduce computational burden for specific reactor analysis applications without sacrificing essential physics fidelity.
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Methodology

2025/5/22

Developing a Hybrid PINN Framework that Integrates Physical Constraints
with Neural Network Flexibility.

Incorporating Prior FDM Solutions and Rayleigh Quotient Formulation to
Enhance Training Stability and Solution Accuracy.

Tailoring Network Architecture for the Complexity of Neutron Diffusion
Eigenvalue Problems.
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Fundamentals of PINN

Basic principle of Physics-Informed Neural Network
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PINN fundamentally operate by incorporating differential equations directly into the neural network's loss
function, enabling the model to learn solutions that simultaneously fit available data and satisfy governing

physical laws.

PINN architecture
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PINN for solving diffusion equation o |
Embedding Governing Equations

« For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:
» The MLP model receives two-dimensional coordinate values as input.

Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve
the two-group neutron diffusion equation.

In order to accurately and stably calculate the neutron distribution and effective multiplication factor k.¢¢, we utilize a
combination of pre-calculation using FDM and the Rayleigh quotients method.
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Embedding Governing Equations
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Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve

In order to accurately and stably calculate the neutron distribution and effective multiplication factor k.¢¢, we utilize a
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PINN for solving ditfusion equation |

Embedding Governing Equations

« For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:

The MLP model receives two-dimensional coordinate values as input.

the two-group neutron diffusion equation.

combination of pre-calculation using FDM and the Rayleigh quotients method.

When the 2D neutron
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Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve

In order to accurately and stably calculate the neutron distribution and effective multiplication factor k.¢¢, we utilize a
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PINN for solving diffusion equation =

Snze 1959

Integrating Physical Constraints using FDM pre-calculation

For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:
e The MLP model receives two-dimensional coordinate values as input.

Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve
the two-group neutron diffusion equation.

In order to accurately and stably calculate the neutron distribution and effective multiplication factor k., we utilize
a combination of pre-calculation using FDM and the Rayleigh quotients method.

Loss function
J(O) = Jppe(8) + Tpc(8) + Tprior(0)

N M
1 2 2 1 , (2 R Y
JPDE(H) = Nz [lFres,fastl + |Fres,thermal| ] JPTiOT(H) = aME [l(]ﬁl(?‘]) o ¢1,FDM(17)| + |(]52(T]) o ¢2,FDM(TJ')| ]
i=1 j=1
K
1 2 2
Jprior (6) = Ez {[¢1 (xi,prior; Yi,prior) — ¢1,FDM (xi,prior: Yi,prior)] + [¢2 (xi,prior: Yi,prior) - ¢2,FDM (xi,prior: Yi,prior)] }
i=1
This loss function indicates that the task is to find a DNN model that outputs values satisfying the
neutron diffusion equation (PDE), the desired geometric conditions (BC), and the pre-calculated
FDM results (Prior) for all points in the two-dimensional domain.
2025/5/22
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Mathematical Formulation of Hybrid PINN *

Calculate k-effective with Rayleigh quotients method

« For solving the 2D 2-group neutron diffusion equation, the model structure was defined as follows:
e The MLP model receives two-dimensional coordinate values as input.
« Each MLP model outputs the neutron distribution of a single group. That is, two MLP models are used here to solve
the two-group neutron diffusion equation.
 Inorder to accurately and stably calculate the neutron distribution and effective multiplication factor k.¢¢, we utilize

a combination of pre-calculation using FDM and the Rayleigh quotients method.
To ensure the reliability of the inference of the core multiplier k¢, value and to provide a solid mathematical

and background for the results, we propose a hybrid method that calculates k.¢ using the Rayleigh
Quotients method applied to the inferred neutron distribution.
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Results & Conclusion

2025/5/22

Comparative Analysis of Flux Distributions and K-effective Calculations
Across FEM, Standard PINN, and Hybrid PINN Methodologies.

Quantifying Performance Improvements at Material Interfaces and
Convergence Characteristics.

Evaluating Computational Efficiency and Accuracy Trade-offs for Practical
Reactor Physics Applications.

The Korean Nuclear Society Spring Meeting
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Benchmark Problem

2D Reactor Configuration with Multiple

122{}[}26 Block reactor geometry
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Benchmark Problem r/

Example flow diagram solving benchmark problem

FDM

1220DZG Block reactor geometry
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Benchmark Problem
Example flow diagram solving benchmark problem
FDM
Ex) 17x17, kef s ppm = 1.76059
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Benchmark Problem

& x;
Example flow diagram solving benchmark problem
| I ‘ JO) = Jppe(0) + Ipc(0) + Tprior(6)
FDM ‘ PINN
Ex) 17x17, kess ppu = 176059
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Benchmark Problem fom
Example flow diagram solving benchmark problem
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Hybrid PINN Training Results |
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Neutron Flux comparison
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Conclusions [0}

Summary

« We are attempting a deep learning PINN-based approach for high-precision, high-
speed core analysis methods for next-generation nuclear reactor research and
development.

« A hybrid strategy of training PINN using prior information obtained from rough FDM
calculations to improve the learning stability of deep learning models and derive
physically and mathematically meaningful results.

Limitations and Future works

 In core analysis involving a wide domain and complex shapes and physics, obtaining
prior information using FDM can act as a bottleneck.

« Conduct future research by refining the methodology to make it more versatile and
conducting verification using diverse and practical benchmark problems.
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