

2025년 Spring Conference 원자력시설해체 및 방페물관리 3

심해 침수된 사용후핵연료 운반용기로부터 방사성 핵종 유출률 계산: 서로게이트 모델 접근법

Calculating radionuclide release rates from deep-sea submerged spent fuel casks: a surrogate model approach

2025-05-23

정구현, 이상훈*

*shlee1222@kmu.ac.kr

목차

사용후핵연료 해상운반

- a. Development of Equivalent Beam Model of High Burnup Spent Nuclear Fuel Rods under Lateral Impact Loading
- 중·장기적으로 사용후핵연료의 집중 관리를 위한 중간저장 시설의 개발은 불가피 하며 이러한 시설로의 운반이 필 요함.
- 모든 원전이 연안에 위치한 국내 특성상 사용후핵연료의 해상운반은 필수임.
- 사용후핵연료의 해상운반시 위험도 평가는 필수적임.
- 위험도 평가는 코드를 이용하여 경로 별로 수행됨.^[2]

• 연구개요

사용후핵연료 해상운반 위험도 평가 코드

- 유실 시, 방사성물질 유출률 평가 필요
- 해상운반 위험도 평가 코드
 - MARINRAD(USA)
 - **POSEIDON(France)**
 - <u>Barrier Effect Model(Japan)</u>

u_m: Flow velocity
R_o: Release rate of radionuclides
q: Release rate of seawater
C: Nuclide concentration
Q: Nuclide inventory
d: Breach size
A: projected area
R_c: Leaching rate

• 연구개요

Barrier Effect Model 개선 (q)

- Cask가 매우 극심한 사고에 노출되더라도 유로 크기는 작을 것으로 예상됨.
- Barrier Effect 모델을 참조함.
- 국내 상황에 적합한 유출률 평가 모듈 개발 필요

〈CRIEPI 개략도〉

〈CRIEPI 주요 식 ^[6]〉

• 연구방법

해수 유출률 평가 모델 개발

- ➢ 심해 환경 해석을 위한 Control Volume 선정
- 용기 규격을 기준으로 설정

Only cladding vs Fuel rod	 Cladding, Pellet Bonded, De-bonded PCI 	 Cladding, arious interface condition Epoxy
---------------------------	---	--

심해 환경 해석을 위한 Control Volume 선정

- 해양환경 반영을 위해선 운반용기 내·외부 해석 수행 필요
- 심해 환경 해석을 위한 Control Volume 선정

모델 개발(Sub-Modeling 이용)

• 두 모델 개발 후 파라미터를 통해 결합(Temperature, Velocity, Total pressure)

Developed Two Models to Use Sub-Modeling Technique

Using the Sub-Modeling Technique to Evaluate Radioactive Material Release Rates

해수 유출률 평가 모델 결과(유속)

Local-Field Model

해수 유출률 평가 모델 결과(온도)

Local-Field Model

10 / 15

11 / 15

Mass Flow Rate (g/s) 01 12 05

Ω

16.8 kW

33.8 kW

100.8 kW

해수 유출률 평가 모델

-0.5 m/s

Decay Heat (kW)

Inside Temperature (°C)

• 해수 유출률 평가 모듈(메타모델)

기계학습을 활용한 메타모델 개발 개략도

• Fitting 함수: 기계학습 기법

심해에 유실된 운반용기 자세 결정

- 유출률 관점에서 보수적인 자세 결정
 - 자세별로 모델을 개발하기에는 많은 자원이 소모되므로, 효율적인 메타모델 개발을 위해 보수적인 자세를 결정하고자 함.

심해에 유실된 운반용기 자세 결정

- 유출률 관점에서 볼 경우 자연대류 상황일 경우 수평 방향, 강제대류 상황일 경우 수직 방향이 보수적
- 메타모델 개발 시 수직, 수평 방향 모두 해석 후 보수적인 값 사용

Velocity (m/s)	Orientation		Case	Release rate [g/s]	Release temp [°C]
0	Inlet side		1	15.63	43.85
		Outlet side	2	13.59	35.96
	Vertical		3	1.528	42.71
0.5	Horizoptol	Inlet side	4	11.09	32.80
	Honzoniai	Outlet side	5	14.38	32.89
	Vertical		6	20.02	30.12

0

Flow

οB

A: 301.92

B: 155.56

C: 473.91

심해에 유실된 운반용기 자세 결정

- 유출률 관점에서 볼 경우 자연대류 상황일 경우 수평 방향, 강제대류 상황일 경우 수직 방향이 보수적
- 메타모델 개발 시 수직, 수평 방향 모두 해석 후 보수적인 값 사용

X

메타모델 개발을 위한 인자 및 범위 선정

- 유로크기, 붕괴열, 외부온도, 외부유속 등 4개의 인자 선정
- 확보한 DB를 활용하여 합리적으로 범위 산정

유로크기 (사고가혹도 반영)

PLUS7	HU 55 GWd/MTU			
	LU 45 GWd/MTU			
ACE7	HU 55 GWd/MTU			
	LU 45 GWd/MTU			
붕괴열 (선원항 반영)				

 $y = f(x_1, x_2, \dots, x_n)$

외부온도, 외부유속 (해양환경 반영)

	유로크기 [mm]	외부온도 [°C]	외부유속 [m/s]	붕괴열 [kW]		
최소	0.3	3	0.09	3.665		
최대	1.0	26.8	1.37	47.050		
입력인자 범위						

16 / 15

X

다구찌 실험계획법 (Taquchi experimental design)

- 소수의 실험을 통해 주요 인자의 영향을 평가 가능
- 4요인 2수준 직교배열 모델 사용 (L₈)
- 인자간 교락이 생기지 않도록 배치

	유로크기 [mm]	외부온도 [°C]	외부유속 [m/s]	붕괴열 [kW]
최소	0.3	3	0.09	3.665
최대	1.0	26.8	1.37	47.050

4요인 **2**수준

column	A	С	AC	В	AB	BC	D
유출률	붕괴열	외부 온도		외부 유속			유로 크기
유출온도	외부 온도	외부 유속		유로 크기			붕괴열

사용한 배열표

17 / 15

다구찌 실험계획법 (Taquchi experimental design)

• 유출률에 영향을 미치는 인자 : 유로크기 > 외부유속 > 붕괴열 > 외부온도

요인	자유도	Seq SS	기여율	Adj SS	Adj MS
붕괴열	1	997.6	5.63%	546.4	450.2
외부온도	1	143.0	0.81%	2002.3	1231.7
외부유속	1	4297.7	24.25%	246.7	4297.7
유로크기	1	7601.0	42.90%	7601	7601.0
붕괴열*외부온도	1	3793.5	21.41%	3793.5	3793.5
붕괴열*외부유속	1	109.8	0.62%	109.8	109.8
외부온도*외부유속	1	776.8	4.38%	776.8	776.8
Total	7	17719.5	100.00%		

	붕괴열	외부온도	외부유속	유로크기	유출률	방향		
1	3.665	3	0.09	0.3	0.096	수평		
2	3.665	3	1.37	1	80.982	수직		
3	3.665	26.8	0.09	1	6.9406	수평		
4	3.665	26.8	1.37	0.3	3.945	수직		
5	47.05	3	0.09	1	33.116	수평		
6	47.05	3	1.37	0.3	5.527	수직		
7	47.05	26.8	0.09	0.3	3.768	수평		
8	47.05	26.8	1.37	1	138.89	수직		
	전산실험 결과 (유출률)							

온도 26.8 ℃

X

다구찌 실험계획법 (Taquchi experimental design)

• 유출온도에 영향을 미치는 인자 : 붕괴열 > 외부온도 > 유로크기 > 외부유속

요인	자유도	Seq SS	기여율	Adj SS	Adj MS
붕괴열	1	2445.17	51.05%	2445.17	2445.17
외부온도	1	682.65	14.25%	34.17	34.17
외부유속	1	785.63	16.40%	1226.51	1226.51
유로크기	1	160.74	3.36%	122.32	122.32
외부온도*외부유속	1	70.54	1.47%	70.54	70.54
외부온도*유로크기	1	57.81	1.21%	57.81	57.81
외부유속*유로크기	1	587.15	12.26%	587.15	587.15
Total	7	4789.7	100.00%		

	붕괴열	외부온도	외부유속	유로크기	온도	방향		
1	3.67	3.00	0.09	0.30	9.80	수평		
2	47.05	3.00	0.09	1.00	58.31	수평		
3	47.05	3.00	1.37	0.30	87.65	수직		
4	3.67	3.00	1.37	1.00	31.97	수직		
5	47.05	26.80	0.09	0.30	37.60	수평		
6	3.67	26.80	0.09	1.00	5.43	수평		
7	3.67	26.80	1.37	0.30	33.65	수직		
8	47.05	26.80	1.37	1.00	37.14	수직		
	저사시치 경기 (이츠이드)							

19 / 15

전산실험 결과 (유출온도)

고연소도 핵연료봉의 단순화 모델 정합성 향상을 위해, 파괴역학 기반 계면 특성 모사와 주요 인자 최적화를 수행하였다.

[연구 내용]

- CIRFT 응답 곡선 기반 계면 해석 수행
- TSL 기반 Surface-based Cohesive Behavior 모델 구성 (총 6개 인자 역추정 수행)
- MIGA를 이용한 최적화 수행 (RMSE, AE 기반 2 목적함수 정식화)
- 계면 손상 시나리오 분석 → 초기 손상 계면(CP/PP)에 따른 차이 평가

[향후 연구]

- 핵연료 성능평가 결과 등 CP, PP 파손 순서 결정을 위한 추가 정보 취득
- 계면 특성 변화를 고려한 핵연료봉 단순화 모델 개발 (Beam 요소)
- 집합체 수준 해석에서 계면 반영 단순화 모델의 적용성 평가

