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1. Introduction 

 
Free convection in vertical flat plates is crucial in 

various engineering applications, including the thermal 

design of research reactor fuel plates. Unlike traditional 

boundary conditions of uniform wall temperature 

(UWT) or uniform heat flux (UHF), nuclear fuels 

generally involve volumetric heat generation rather than 

being limited to UWT or UHF conditions. This requires 

a systematic approach to assess whether the heating 

plate’s thermal boundary condition aligns more closely 

with UWT or UHF conditions. 

In previous studies, peak temperature correlations 

were mainly developed under either UWT or UHF 

conditions[1]. However, for plates with identical 

volumetric heat generation, the peak temperature varies 

significantly depending on whether UWT or UHF 

assumptions are used [2].  

This study proposes a quantitative scaling criterion to 

determine which boundary condition more accurately 

describes a given thermal system. The approach is 

based on analytical derivation using perturbation 

analysis, numerical solutions via the Runge-Kutta 

method 

 

2. Analytical Derivation 
 

To assess the wall thermal boundary conditions of 

free-convective plates with volumetric heat generation, 

the governing equations of conjugate heat transfer were 

examined using perturbation methods. 

The thermal boundary layer thickness (δT) in free 

convection is typically proportional to the -1/4th power 

of the Rayleigh number for UWT and the -1/5th power 

of the q''-based Rayleigh number for UHF conditions. 

These relationships determine how heat flux and 

temperature vary along the plate. 

To define the Rayleigh number converted from 

volumetric heat generation (q’’’) to the UHF condition, 

the temperature difference in Eq. (1) is changed to 

(q’’’d)/k as follows; 
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From now on, the longitudinal length of a plate (x) 

was replaced by L. For a simple non-dimensionalization 

of the governing equations, the Rayleigh number 

(RaUWT,q’’’), converted from volumetric heat generation 

to the UWT condition, is introduced with a power of -

1/4th to T, as shown in Eq. (2). 
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Based on the Rayleigh number converted from the 

volumetric heat generation to the UWT condition, the 

ratio of free convection to longitudinal conduction in a 

solid (sconj,mo) can be defined using Eq. (3) 
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Using parameters in Eq. (3) and the similarity 

variables in Eq. (4), the governing equations were 

transformed into non-dimensional equations (Eqs. (5)–

(12)) [3]. The geometrical interpretation are shown in 

Fig. 1. 

 
Fig. 1. Geometrical interpretation for free 

convective/conductive conjugate heat transfer 
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Non-dimensional governing equations 
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Boundary conditions 
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Eq. (7) was integrated along the z-direction to 

determine the surface heat flux at the interface between 

the solid and fluid. Assuming that the plate was 

sufficiently thin, the average temperature in the z-

direction was equal to the wall temperature. 
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First, the case in which the longitudinal conduction 

dominated convection with d/(Lconj,mo) significantly 

greater than unity was considered. To solve the non-

dimensionalized governing equation, the perturbation 

method was employed, in which solid and  are 

expanded as a power series in the parameter d/(Lconj,mo) 

= . 
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Collecting terms of the same order, the following 

equations can be obtained. 
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By integrating Eq. (17) along the  direction, and 

applying Eq. (19), d/d becomes -3/4. The leading-

order variable of the fluid () can be solved in terms of 

the solid temperature (solid) using the existing similarity 

analyses. 
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Considering the non-dimensionalization of Eq. (20), 

the heat flux is proportional to x-1/4, similar to the case 

of the UWT solution, as shown in Eq. (21). Notably, 

when the longitudinal conduction dominated convection, 

the solution approached that of the UWT solution. 

 
1/ 4

, ''' 1/ 4

, '''

1/ 4

,

3
''

4

longitudinal conduction
'' ~  for  ~ 1

free convection

UWT q

UWT q

conj mo

TT x
q k k Ra

y L L

d
q x

L

−

−

  
= − =  

  



(21) 

 

Next, a case in which convection significantly 

dominated the longitudinal conduction, with d/(Lsconj,mo) 

much less than unity, was considered. In this case, the 

first term on the left side of Eqs. (13) can be neglected, 

resulting in Eq. (22). Considering the non-

dimensionalization of Eq. (22), the heat flux becomes 

constant, similar to that of the UHF solutions. 
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3. Numerical Evaluation 

 

A numerical analysis of the nondimensional 

governing equations was conducted to examine the 

effect of the d/(Lsconj,mo) value near unity. Eqs. (5) and 

(6), which represent free convective flows, can be 

expressed as a system of ordinary differential equations 

as shown in Eqs. (24) and (25), respectively. Here, the 

influence of longitudinal heat conduction on the flow is 

neglected. 
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For the above equations based on the Runge–Kutta 

method, initial conditions for f3, f4, and f5 are necessary. 

Assuming that f4(0) is the wall temperature, Eq. (25) 

was calculated to satisfy boundary conditions in Eq. 

(27), and the wall velocity gradient f3(0) and wall heat 

flux f5(0) were determined. The MATLAB function 

ode15s was used to solve the differential equations. 

Subsequently, the solid conduction was solved by 

integrating Eq. (13) along the  direction. The 

discretization is illustrated in Fig. 2. 

 
2

2 1/ 4

, 0

1
1

e e
solid

w w
conj mo

d
d d

L


 
 

   
=

   
+ = −         

 
         (28) 

( )3/ 4 3/ 4

, 0

4
0

3

solid solid
e w

conj mo e w

d

L


  
  

   
=

   
− + + − =     

(29) 

( ) ( )

( )

, , , ,

,

,3/ 4 3/ 44
0

3

solid E solid P solid P solid W

conj mo e w

solid P

e w

d

L

 

   

  

 
  



=

 − −
− 

 
 

−
+  + − =



         (30) 

( ) ( )

( )

( )

, , ,

,

3/ 4 3/ 4

3/ 4 3/ 4

where , ,

4
,

3

4

3

p solid P E solid E W solid W

E W

conj mo moe w

e w

e w

P E W

a a a b

h h
a a

L Bi L

b

a a a

 

  

  

  




 



=

= + +

= =

−
=  +



−
= + +



       (31) 

 

 
Fig. 2. Discretization of a free-convective vertical plate 

 

In Eq. (30),  and = are obtained from the 

solutions of Eq. (24)–(27). The solid temperature (solid) 

obtained from Eq. (30) is used as the input to solve Eq. 

(24)–(27), resulting in updated values for  and =. 

This iterative calculation was repeated until the 

interface condition between the fluid and solid was 

satisfied. The iterative calculations for the fluid and 

solid regions are shown in Fig. 3.  

Figs. 4(a) and (b) show the temperature profiles 

calculated numerically for Prandtl numbers of 1.0, and 

10, respectively. As proposed in Section 2, the 

temperature profiles converged to the UWT solution 

when d/(Lconj,mo) was extremely large. When 

d/(Lconj,mo) was extremely small, the wall temperature 

was proportional to 1/5, which is identical to that of the 

UHF solution. In addition, when the temperature profile 

converges to the UWT solution, the temperature values 

closely match the solid0 value in Eq. (20), as listed in 

Table 1. 

The heat flux profiles are presented in Figs. 5(a) and 

(b) for Prandtl numbers 1.0 and 10, respectively. 

Similarly, the heat-flux profiles converged to the UHF 

solution when d/(Lconj,mo) was small. In cases where 

d/(Lconj,mo) is large, the heat flux is proportional to -1/4, 

which is identical to the UWT solution in Eq. (3). 

Interestingly, the non-dimensional temperature is 

affected by the Prandtl number, whereas the non-

dimensional heat flux is not influenced by the Prandtl 

number, as derived in the analytic solutions of Eqs. (20), 

(21), and (23). 

 

 
Fig. 3. Iterative calculation matching interface 

conditions 
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Fig. 4. Profiles of non-dimensional temperature for  

(a) Pr = 1.0 and (b) Pr = 10 

 

 

 

 
Fig. 5. Profiles of non-dimensional heat flux for  

(a) Pr = 1.0 and (b) Pr = 10 

 

Table 1. Comparison of solid0 for UWT calculated 

analytically and numerically 

 Pr=0.1 Pr=1.0 Pr=10 

Numerical solid0  

for UWT  
2.073 1.651 1.499 

Analytical solid0  

for UWT in Eq. (20) 
2.149 1.657 1.469 

In conclusion, when the longitudinal conduction is 

much more dominant than the free convection 

represented by the nondimensional parameter 

d/(Lconj,mo), the solutions converge to the UWT 

solution. Conversely, when the convection was 

significantly more dominant than the longitudinal 

conduction, the solution converged to the UHF solution. 

The specific criteria are expressed in Eq. (32). 
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4. Conclusions 
 

This study proposed evaluations for the wall 

boundary conditions of free convective thin plates with 

volumetric heat generation using analytical and 

numerical approaches. The key findings indicate that 

the non-dimensional parameter d/(Lσconj,mo) determines 

the dominant thermal boundary behavior, with values 

above 0.5 leading to uniform wall temperature (UWT) 

conditions and those below 0.01 resulting in uniform 

heat flux (UHF) conditions. Numerical analyses 

confirmed that while the Prandtl number affects the 

temperature distribution, it has minimal impact on heat 

flux profiles. Additionally, the study found that UHF 

conditions result in the highest peak temperatures, while 

UWT conditions yield the lowest. These insights 

provide practical guidelines for optimizing material 

selection and plate dimensions to achieve desired 

thermal boundary conditions in thermal design of fuel 

assemblies. 
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