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1. Introduction 

 
Liquid metals have many engineering applications, 

including their use as coolants and functional materials 
in nuclear reactors. For example, sodium, lead, and the 
lead-bismuth eutectic are being considered as possible 
candidate materials for coolants of fast reactors, and 
lithium and the lead-lithium eutectic as tritium breeders 
for nuclear fusion reactors. However, many liquid metals 
exhibit either high corrosiveness to steels or high 
reactivity with air, which poses a challenge to reactor 
safety and requires significant engineering effort to 
implement. If a new liquid metal alloy that shows 
sufficiently low corrosiveness of steel materials and 
reactivity with air can be discovered, it could make a 
significant contribution to the development of advanced 
nuclear reactors. 

In order to explore and newly find such an ideal liquid 
alloy, one has to examine various combinations and 
compositions of liquid metals. Without a doubt, there 
will be a considerable number of tests to be done, making 
an experimental approach an impractical choice for the 
search. Rather, adopting a computational method could 
be more efficient.  

In recent years, the machine-learning-aided discovery 
and development of new materials, often referred to as 
materials informatics, has been attracting much attention 
in the field of materials engineering. Throughout many 
improvements, it now features high enough accuracy of 
its computational result with reasonably low calculation 
cost.  

Therefore, we are developing a materials informatics 
approach to the search for new liquid metal alloys. As a 
first step to realize accurate and efficient computational 
simulations, preparing an automated method to construct 
accurate machine learning potential models is a critical 
task. In this research, we propose a scheme to train a 
machine learning potential that can model the behavior 
of an impurity in a liquid bi-alloy with reasonable 
accuracy at a manageable computational cost. To 
demonstrate the performance of this scheme, we make a 
machine learning potential that can model the behavior 
of oxygen impurity in any composition of the Pb-Li 
liquid alloy, and validate the performance of the machine 
learning potential on liquid material properties and the 
behavior of oxygen in pure liquid Pb, pure liquid Li, and 
the Pb-Li eutectic as test cases. The Pb-Li system was 
selected as it contains three liquid metals relevant to 
advanced reactors: Pb, Li, and the Pb-Li eutectic. 

 
2. Methods  

 
2.1 Training scheme of Machine-learned potential model  

 
In this research, we use Machine Learning Interatomic 

Potential (MLIP) package [1] for training machine 
learning potential in the form of the moment tensor 
potential (MTP) [1].  

 

 
Fig. 1. Training scheme of MTP for all-range of Pb-Li liquid alloy 
including one O impurity in its system  

We suggest a training scheme comprised of two parts: 
a supervised learning part and an active learning part. In 
supervised learning, our main goal is to make an initial 
MTP, which will be used for the following stages of 
training. This step starts with performing density 
functional theory (DFT) calculations on systems of Pb-
Li liquid alloy to gather training dataset which is 
comprised of various atomic configurations, and their 
corresponding physical values, namely, energy, forces, 
and stresses. To gather a sufficiently diverse training 
dataset in terms of temperature and composition, data for 
each system are collected from 90 different simulations. 
These simulations vary in their settings, incorporating 
five different compositions (lithium fractions of 2.9%, 
20.6%, 50%, 79.4%, and 97.1%), two temperatures 
(700K and 1200K), three different volumes (a system 
with a 3% expanded lattice constant, a system at zero 
pressure, and a system with a 3% contracted lattice 
constant), and three different initial configurations. Each 
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simulation is performed for 30 steps with a timestep of 1 
fs. Then, 5 steps of configurations are uniformly sampled 
out of each of the simulations. As a result, a total of 450 
configuration data ( 5 × 2 × 3 × 3 × 5 ) are obtained. 
Thereafter, an MTP is fitted with the obtained dataset, 
constructing the initial MTP which will be used in active 
learning.  

On next active learning stage, one aims to complete 
the training of MTP throughout simulations of classical 
molecular dynamics (CMD) by actively searching for 
atomic configurations that are dissimilar to the 
configurations included in the original dataset. The 
similarity/dissimilarity is determined by a single value 
called MV grade defined by D-optimality criterion [2]. If 
a MV grade of a newly found configuration is within a 
certain appropriate range, the configuration is considered 
to be sufficiently dissimilar and added to the existing 
training set. Subsequently, the MTP is refitted on the 
updated training for improvement.  

This process of active learning can be iterated by 
several times, until the MTP cannot find more dissimilar 
configurations with its current version, within long 
enough CMD simulation. To gather data as diverse as 
possible, CMD of each iteration starts with different 
initial configuration. When the iteration ends, we 
consider the training process for the MTP to be finished. 

In this research, initial MTP trained at supervised 
learning is used in first iteration of active learning. 
Dissimilar configurations were searched for 100 ps of 
CMD at two temperatures of 700 K and 1200 K each with 
a timestep of 1 fs. When MV grades of a configurations 
are within a range of 2~10, the configurations are 
accepted and will be added to the training data. As a 
result, MTP for Pb-Li alloy was finished after one 
iteration of active learning. 

In order to make an MTP that can cover Oxygen in Pb-
Li alloy, we performed another set of supervised learning 
and active learning for a system of an impurity inside of 
Pb-Li alloy. In this case, we have constructed the training 
set of the initial MTP from 681 data with 450 data from 
supervised learning on oxygen impurity in Pb-Li alloy, 
221 data from earlier dataset for Pb-Li alloy which are 
selected to represent the whole dataset, 10 data that 
contains wall structure to ensure MTP to avoid making 
void structure during CMD simulation. Then, we 
performed active learning with the same settings, and 
obtained trained MTP for a system of oxygen impurity 
inside Pb-Li alloy after two iterations of it. We confirmed 
that our trained MTP was fitted properly to its training 
set, having an error of 1.8 meV per atom from the DFT 
training set, which can be considered as a reasonable 
value compared to previous studies.  
 
2.2 DFT calculation settings 
 

DFT calculations including FPMD simulations were 
performed by using the Vienna Ab initio Simulation 
Package (VASP). The PBE functional was used for the 
exchange-correlation functional of Kohn-Sham equation. 

The energy cutoff for the plane-wave basis was set to 400 
eV. For reciprocal-space sampling of the band energy, a 
2×2×2 Monkhorst-Pack grid was used. The volume and 
shape of the system were fixed during an FPMD 
calculation. For determining the partial occupancy of 
each orbital, the first-order Methfessel-Paxton smearing 
method was used with a smearing width of 0.2 eV. Non-
spin polarized calculations were performed since oxygen 
shows no spin polarization in Pb-Li alloy. Each 
electronic self-consistent calculation loop was set to 
repeat 100 steps but to break when the energy change of 
the system did not get larger than 10ି଺  eV for two 
continuous steps.  

 
2.3 CMD calculation settings 
 

CMD calculations were performed for active learning 
and production runs of material properties with the 
trained MTP. The Large Scale Atomic/Molecular 
Massively Parallel simulator (LAMMPS) built in the 
MLIP library was used.  
 

3. Results and discussion 
 
3.1 MTP validation  
 

To confirm that the trained MTP accurately simulates 
the structure of Pb-Li liquid alloy, a neutron scattering 
structure factor was calculated using Dynasor package [3] 
from CMD simulation with the trained MTP and 
compared with a neutron scattering experiment data 
obtained by Ruppersberg [4]. Since the referred neutron 
scattering experiment was conducted with 𝐿𝑖଻  isotope 
and natural Pb, neutron scattering lengths for each 
element was set to 𝑏௉௕ = 9.40 fm and 𝑏௅௜ = −2.22 fm 
in the calculation. 

 

 
Fig. 2. Structure factor calculated by MTP at 1100 K with the 
experimental neutron scattering result of Ruppersberg [4]. 

As shown in Fig. 2, peaks of the neutron structure 
factor of Pb-Li eutectic calculated by MTP match with 
peaks from the experimental result in terms of their 
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locations, placed at  2.3 Å⁻¹ and 4.2 Å⁻¹. However, the 
calculation underestimates the heights of the peaks.  

Densities of the system of Pure liquid Pb, pure liquid 
Li and Pb-Li eutectic (Li 17%) were also calculated by 
MTP and compared with experimentally determined 
values. Table 1 shows the calculation results. While  
densities calculated by MTP only showed 3% of 
deviation from an experimental data [5], MTP 
underestimated density of pure Pb nearly by 20% from 
an experimental value  [6]. Among several factors that 
have caused this discrepancy, inaccurate DFT 
calculation settings for MTP training could be the main 
reason. For example, exchange-correlation functional 
that has been used on DFT calculations might not be 
suitable enough to determine density of Pb. In the same 
context, even if calculated density of Pb-Li eutectic 
shows only 2% deviation from an experimental data [7], 
this does not mean that MTP can accurately simulate the 
structure, because the Pb atoms in eutectic are also likely 
to be simulated with limited accuracy. Improving the 
accuracy of the DFT exchange-correlation functional is 
a possible future topic. 
 
Table 1. Density of the system of pure liquid Pb, pure liquid Li and Pb-
Li eutectic at 1100 K calculated by MTP in comparison with 
experimental results [5,6,7]  

Unit: (𝑔/𝑐𝑚ଷ) Density by MTP 
Density by 

experiments 

Pure Pb 8.4155 10.0201 

Pure Li 0.4625 0.4517 

Pb-Li eutectic 9.2323 *9.3298 

*Data at 1000K 
 
3.2 Solution enthalpy of 𝑂ଶ 
 

The solution enthalpy of 𝑂ଶ  (𝐻ைమ
) for each system 

was calculated from CMD simulations on the three 
systems with and without adding one oxygen impurity in 
each. CMD simulation settings were the same as 
precious simulations for density determination. The 
enthalpy of 𝑂ଶ  gas was first determined by DFT 
calculation at 1000 K [8], and its temperature 
dependence from 1000 K to 1100 K was corrected 
referring on NIST data [9] on thermodynamical 
properties of 𝑂ଶ molecule.  
 
Table 2. 𝑂ଶ solution enthalpy for the system of pure liquid Pb, pure 
liquid Li and Pb-Li eutectic calculated by MTP and their standard 
error of the mean (SEM). 

 

In order to confirm validity of the result, we have 
compared the 𝑂ଶ  solution enthalpy with experimental 
results by using an enthalpy diagram illustrated in Figure 
3 [8]. In Fig. 3, the blue line corresponds to the enthalpy 
change with available experiment data. The enthalpy 
change due to the dissolution of 𝐿𝑖ଶ𝑂 into liquid Li can 
be calculated by Van 't Hoff equation on solubility 
experiment conducted by R.M. Yonco et al. [10], and the 
other data were taken from NIST database. 
 

 

Fig. 3 Enthalpy diagram for determining solution enthalpy of 𝑶𝟐 with 
existing reference data. Directions of the arrows indicate directions for 
change of states. 

 
Table 3. Enthalpy changes and their corresponding enthalpy 
differences determined by experiments [9,10,11] compared with 𝑂ଶ 
solution enthalpy determined by MTP.  

 
𝑂ଶ  solution enthalpy calculated by MTP predicted 

higher solution enthalpy values in both pure Pb and pure 
Li. One probable reason for this error could be, again, the 
inaccuracy of PBE functional for the exchange-
correlation energy. The previous study indicates that a 
DFT using PBE functional overestimates a binding 
energy of O2 by 0.9 eV [8], which partly explains the 
errors observed in Table 3.    

Even if MTP did not perfectly work, it is evident that 
the solution enthalpy of oxygen in pure Pb was much 
higher than that in pure Li, which can be partly explained 
by the large electronegativity difference between O and 
Li, compared to that between Pb and O. However, it is 
notable that even when the number ratio of Pb is much 
higher than that of Li (83% vs 17%), the solution 
enthalpy of oxygen in the Pb-Li eutectic is lose to that in 
pure Li rather than that in pure Pb. This might indicate 
that even in a system with Pb rich environment, oxygen 

System 
𝑂ଶ solution H 

(eV/atom) 
SEM 

(eV/atom) 

Pure Pb -1.5194 0.09739 

Pure Li -5.1487 0.06616 

Pb-Li eutectic -3.6300 0.08152 

Enthalpy 
change 

𝐿𝑖ଶ𝑂 
(eV/atom) 

𝑃𝑏𝑂 
(eV/atom) 

Reference 

(a) -0.6285 -0.3846 [9] 

(b) -6.2267 -2.2819 [9] 

(c) 0.6326 0.4664 [9] 

(d) 0.0083 0.0083 [10],[11] 

∆𝐻௦௢௟ைమ
 

by 
experiments 

-6.2143 -2.4226 - 

∆𝐻௦௢௟ைమ
 

by MTP 
-5.1487 -1.5194 - 
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still chooses to gather up with Li atoms rather than Pb 
atoms due to strong interaction between Li and O atoms. 
 
3.3 Structure of oxygen in pure Pb, pure Li and eutectic  

 
We have calculated partial pair distribution functions 

for a system of pure liquid Pb, pure liquid Li and Pb-Li 
eutectic. CMD simulations were performed with the 
same settings as previous ones. The partial pair 
distribution functions of O-Pb and O-Li pairs in pure Pb, 
pure Li and eutectic systems are presented in Fig. 4. The 
O-Pb pair distribution function in pure Pb holds the first 
peak at 2.3 Å, while the O-Li pair distribution functions 
in Pb-Li eutectic and pure Li make their peak around 1.9 
Å, clearly closer than the O-Pb pair. In eutectic system, 
O-Li pairs dominate over O-Pb pairs in the first 
neighborhoods of O. 

 

 
Fig. 4. Oxygen pair distribution function in a system of pure liquid Pb, 
pure liquid Li and Pb-Li eutectic at 1100 K 

In general, Li and O are expected to make a strong 
interaction due to the large difference between their 
electronegativity. Beyond that, they might form similar 
structures in pure liquid Li or in Pb-Li eutectic, since the 
location of the first peak of O-Li does not change much 
even when composition of the system has dropped from 
100% of Li to 13 % of Li. 

To further verify this, we have calculated a 
coordination number (CN) for O impurity in each system 
by integrating the pair distribution functions from 0 to 
the valley after their first peak, counting first neighboring 
atoms around O atom. As shown in Table 4, CN for pure 
liquid Li and Pb-Li eutectic are similar to each other 
considering that they have a large difference in Li 
percentage. This implies a strong attractive tendency 
between O and Li which can even overcome Pb rich 
environment of eutectic. 

However, the absolute difference in solution enthalpy 
of 𝑂ଶ  between pure Li and Pb-Li eutectic is not 
negligible. This could be explained by increased CN of 
Pb-Li eutectics even by comparably small amount (1.41). 

 
 

 
 
Table 4. Coordination number (CN) of O impurity in a system of pure 
liquid Pb, pure liquid Li and Pb-Li eutectic at 1100 K. 

System CN for O impurity 

Pure Pb 3.69  

Pure Li 4.38 (Li atoms) 

Pb-Li eutectic 5.79 

 
It is also noticeable that CN for pure liquid Pb is 

somehow comparable to that for Li, yet 𝑂ଶ  solution 
enthalpy in pure Pb is much higher than that in pure Li 
or Pb-Li eutectic. To explain this, we have performed 
Bader charge analysis [12] in order to understand 
distribution of atomic charges in a Pb-Li eutectic system. 
The code developed by Henkelman research group at 
University of Texas at Austin was used for this analysis. 

The results on Fig. 5 shows that Pb atoms tend to be 
negatively charged and Li atoms are positively charged 
in eutectic system. This trend on charge distribution is 
probably due to electronegativity gap between Pb and 
Li. Also, Li atoms exhibit sharper charge distribution in 
a range of 0.8 ~ 0.9 e. This can be explained by the 
number of valence electrons for each solvent elements, 
with Li atoms having no affordable number of electrons 
to lose more than one. 

 

 
Fig. 5. Distribution of Bader charges of Pb and Li atoms in a system of 
Pb-Li eutectic including one O impurity. The total number of atoms is 
101. 

Shifting our focus on oxygen, even if there is only 
one O atom in the system, it shows a lowest Bader charge 
of -1.67 e. This should explain why Li and O atoms 
showed strong interaction and were able to maintain their 
structure even in eutectic system. In other words, the 
strong Coulomb interaction caused by large charge 
difference helped them to form such stable structures. 
Furthermore, this also explains why comparable CN of 
Pb atoms did not make comparable solution enthalpy of 
𝑂ଶ with pure Li or eutectic systems. As Pb atoms also 
have negative charge due to charge transfer between Li, 
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it is likely that they have failed to exhibit as strong 
Coulomb interaction with O as Li atoms did. In 
conclusion, it is likely that a strong Coulomb interaction 
caused by charge transfer between them forms Li-O 
structures, and the existence of such structures dominates 
solution enthalpy of O2.   

 
5. Conclusions 

In this research, we proposed a scheme to train a 
machine learning MTP to simulate O impurity in Pb-Li 
liquid alloy by utilizing supervised learning and active 
learning. Our trained MTP showed non-negligible 
amount of deviation from experimental results on 
neutron scattering structure factor, densities, and  𝑶𝟐 
solution enthalpy on systems of Pb-Li eutectic, pure 
liquid Li, and pure liquid Pb. We considered that these 
errors came from PBE functional used for the exchange-
correlation energy in the present study. 

Despite these errors, the MTP reproduced various 
liquid properties and O2 solution enthalpy with fair 
accuracy. Therefore, we were able to discuss behaviors 
of O atom with MTP by analyzing the partial pair 
distribution function, coordination number and Bader 
charge analysis. We identified similar O-Li structures in 
pure Li and Pb-Li eutectic, caused by charge transfer 
between atoms. We concluded that due to the strong 
Coulomb interaction between O and Li atoms, which is 
caused by the large difference in their electronegativity, 
O-Li pairs are dominant over O-Pb pairs even in eutectic 
system and exert a strong influence on the solution 
enthalpy of O2. Our future work will focus on expanding 
our analysis to the full range of Pb-Li alloy compositions 
with the trained MTP. 
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