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1. Introduction 

 
Signals in nuclear power plants (NPPs) are important 

for monitoring system status, ensuring operational 

stability, and maintaining safety. A failure in these 

signals can lead to misinterpretation, delayed decision-

making, and severe accidents. In addition, these signals 

serve as inputs to artificial intelligence (AI)-based 

operator support systems, where anomalies can disrupt 

the responses of AI models and lead to incorrect actions. 

Therefore, the accurate restoration of signal failures is 

essential to maintain system integrity and ensure safe 

operation. It also enhances the reliability of decision 

support systems by preventing AI-induced errors. 

 

2. Background 

 

Previous studies have used a long short-term memory-

variational autoencoder (LSTM-VAE) based restoration 

model that reconstructs the corrupted signal using an 

encoder-decoder structure [1]. The LSTM-VAE model 

learns the distribution of normal signals and reconstructs 

the anomalous signal to restore its original shape. While 

this model performed well for certain types of signal 

failures, it struggled to restore stuck failures, where the 

signal remains at a constant value. The LSTM-VAE 

model is less effective for signals with minimal temporal 

variation, such as stuck failures, because it relies on 

temporal variation for reconstruction. For signals with 

minimal inherent temporal variation, partial restoration 

was achievable. However, in the NPPs, most signals 

exhibit complex, nonlinear patterns; therefore, 

reconstruction alone is insufficient for satisfactory 

restoration performance. An iterative reconstruction 

approach was applied to improve restoration 

performance, but stuck signals remained difficult to 

restore, even after multiple iterations. Moreover, low 

performance of signal restoration negatively impacted 

the subsequent scenario diagnosis, which can reduce the 

overall system reliability. 

In this study, a prediction-based restoration model 

using LSTM instead of reconstruction is proposed to 

address these problems. The approach predicts the target 

variable with anomalies using information from the 

remaining variables. This approach allows the model to 

learn normal time-series patterns more effectively by 

excluding signal failure input. Therefore, this study aims 

to enhance signal integrity and ensure stable operation in 

the NPPs by improving restoration performance. 

3. Methods 

 

In this study, we developed the signal restoration 

model using the LSTM method. The NPPs data consist 

of multivariate time-series data, in which capturing the 

temporal patterns is essential for accurate signal 

restoration. LSTM is a machine learning algorithm 

optimized for processing time-series data [2]. It was 

designed to address the vanishing gradient problem in 

traditional recurrent neural networks (RNNs). Unlike 

RNNs, which suffer from long-term dependency 

problems and loss of information in long sequences, 

LSTM preserves past information through cell states and 

gate mechanisms. Because of these properties, LSTM is 

well suited to learn the nonlinear variations in the NPPs 

data and can be effectively applied to signal restoration. 

The structural differences between the RNN and the 

LSTM are shown in Fig. 1. 

 

 
 

Fig. 1. Comparison of RNN and LSTM architecture. 

 

4. Data 

 

In this study, we collected signal data using the 

compact nuclear simulator (CNS). Four emergency 

scenarios were selected to evaluate signal restoration 

under different conditions, and various malfunctions 

were injected to generate diverse datasets. Signals were 

collected for 1,800 seconds and divided into training, 

validation, and test sets. The distribution of each dataset 

is summarized in Table I. 

 

Table I: Distribution of scenarios and datasets 

No. Scenario 
No. of 

train/val/test 

1 LOCA 18/2/5 

2 ESDE 18/2/5 

3 FWLB 15/2/4 

4 MSLB 16/2/4 
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We analyzed the variables to be monitored by 

operators in the CNS and selected a total of 28 variables. 

This study focuses on signal restoration, particularly in 

cases involving single signal failures. Table Ⅱ lists 28 

selected variables that are referenced in the results 

section. 

 

Table Ⅱ: Example variables from the selected dataset 

No. Variables description 

0 Pressurizer pressure 

1 Pressurizer delta level 

2 Pressurizer level 

3 Pressurizer uncompensated level 

4 Pressurizer temperature 

5 Charging line outlet temperature 

6 Containment pressure 

7 Steam generator #1 pressure 

⋮ 

15 Hot-leg #1 temperature 

16 Hot-leg #2 temperature 

17 Hot-leg #3 temperature 

18 Loop #1 average temperature 

19 Loop #2 average temperature 

20 Loop #3 average temperature 

21 Cold-leg #1 temperature 

22 Cold-leg #2 temperature 

23 Cold-leg #3 temperature 

24 H2 concentration 

25 Cold-leg #1 safety injection flow 

26 Cold-leg #2 safety injection flow 

27 Cold-leg #3 safety injection flow 

 

5. Results 

 

In this study, a prediction-based signal restoration 

model was developed using the LSTM method. The 

model used the remaining 27 variables to predict the 

target variable, excluding the target variable. This 

ensures that signal failures are not directly input into the 

AI model. By preventing direct input of signal failures, 

the model learns normal time-series patterns more 

effectively, improving the reliability of restoration. 

A set of 28 restoration models was developed, each 

responsible for restoring a specific target variable. The 

performance evaluation is divided into two approaches: 

Numerical performance evaluation and similarity 

evaluation. 

 

5.1 Numerical performance evaluation 

  

The numerical error metrics are used to evaluate the 

predictive accuracy of the model. Specifically, they 

measure the difference between the restored and actual 

values, providing an objective assessment of restoration 

performance. 

The performance evaluation was conducted using 

mean absolute error (MAE), mean squared error (MSE), 

root mean squared error (RMSE), and R-square (R2) 

metrics. MAE measures the mean absolute error between 

the predicted value and the actual values, with lower 

values indicating better performance. MSE is the mean 

square error between the predicted and the actual values, 

and RMSE is the square root of the MSE. R2 is a metric 

that indicates how well the model predicts, with values 

closer to 1 representing better predictive performance. 

These metrics are calculated by Eqs. (1)-(4). 
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Table Ⅳ summarizes the top five best performing 

models and the bottom five worst performing models. 

Table Ⅲ provides a comparison of training performance 

based on the test performance criteria. Most models 

showed high performance, although some variables 

showed relatively lower restoration performance. 

Nevertheless, the overall results confirm stable 

restoration performance. 

 

Table Ⅲ: Restoration model performance on train data 

Variable 

number 

Performance metrics 

MAE MSE RMSE R2 

23 0.0077 0.0001 0.0089 0.9655 

20 0.0075 0.0001 0.0089 0.9590 

26 0.0094 0.0002 0.0124 0.9634 

4 0.0189 0.0008 0.0247 0.9183 

21 0.0166 0.0005 0.0191 0.9636 

⋮ 

7 0.0569 0.0088 0.0712 0.9458 

1 0.0312 0.0034 0.0524 0.9542 

22 0.0730 0.0067 0.0750 0.9018 

15 0.0607 0.0079 0.0643 0.9586 

3 0.0134 0.0004 0.0182 0.9695 

 

Table Ⅳ: Restoration model performance on test data 

Variable 

number 

Performance metrics 

MAE MSE RMSE R2 

23 0.0079 0.0001 0.0089 0.9640 

20 0.0077 0.0001 0.0089 0.9584 

26 0.0096 0.0002 0.0124 0.9634 

4 0.0133 0.0004 0.0181 0.9709 

21 0.0164 0.0004 0.0188 0.9631 
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⋮ 

7 0.0573 0.0091 0.0711 0.9463 

1 0.0432 0.0051 0.0683 0.8933 

22 0.0726 0.0066 0.0744 0.9017 

15 0.0621 0.0083 0.0653 0.8570 

3 0.1104 0.0155 0.1225 0.8895 

 

The signal restoration performance for selected 

variables is shown in Fig. 2. The blue line represents the 

original signal, while the red line indicates the stuck 

failure where the signal remains constant. The green line 

is the restored signal using the proposed model. The 

results demonstrate that restored signal closely follows 

the original data. 

 

 
(a) Cold-leg #3 temperature 

(best-performing variable, No. 23) 

 

 
(b) Loop #3 average temperature 

(second best-performing variable, No. 20) 

 

Fig. 2. Signal restoration results. 

 

5.2. Similarity evaluation 

 

The similarity metric evaluates how closely the 

restored signal follows the pattern of the original signal. 

The cosine similarity was calculated to evaluate the 

similarity between the restored signal and the original 

signal. Cosine similarity is a measure of similarity based 

on the cosine angle between two vectors. The closer this 

value is to 1, the higher the similarity. The average cosine 

similarity of the 28 models was 0.98379, ranging from 1 

to 0.82012. The cosine similarity results for stuck signal 

failures in previous studies are shown in Table Ⅴ. While 

previous studies exhibited lower restoration performance, 

with an average similarity of 0.65-0.75, the proposed 

model maintained higher similarity, demonstrating 

improved restoration performance. The restoration 

performance of the proposed model compared to 

previous studies is shown in Fig. 3. The results 

demonstrate that the proposed model achieves higher 

similarity to the original signal, confirming its 

effectiveness in restoring stuck failures. 

 

Table Ⅴ: Cosine similarity of restored signals for different 

levels of stuck failure 

Stuck 

Level of signal 

failure 
Cosine similarity 

1 0.73 

0.5 0.75 

0 0.65 

 

 

  
(a) Previous study results [1] 

 

  
(b) Proposed model results 

 
Fig. 3. Comparison of signal restoration performance. 

 

These results indicate that the proposed restoration 

model provides the more stable and accurate restoration 

by excluding signal failures and using only normal 

variables. In particular, the proposed model outperforms 

previous approaches in handling stuck failures, ensuring 

more reliable restoration. 

 

6. Conclusions 

 

In this study, a prediction-based restoration model was 

developed to improve the restoration performance of 

stuck failures, which had limited performance in 

previous studies. Existing reconstruction-based methods 

have failed to effectively restore stuck signals, leading to 

the proposed approach using LSTM for prediction-based 

restoration. The proposed model predicts the target 
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variable using the remaining variables and replaces the 

signal failure with the predicted value. This approach 

prevented the direct input of signal failures into the 

model, allowing it to learn normal time-series patterns, 

and thereby improving the reliability of restoration. 

The results confirm that the proposed method achieves 

more stable and accurate restoration compared to the 

existing models. In particular, the reliability of the signal 

failure identification and restoration system is improved 

by addressing the stuck problem identified in previous 

studies. 

However, some variables exhibited relatively lower 

restoration performance. This suggests differences in 

restoration difficulty between variables. Future studies 

are required to develop a more robust restoration model. 

In addition, the proposed model was developed on 

accurately identifying the anomalous variable during the 

signal failure detection phase. Misidentification of the 

signal failure can lead to reduced restoration 

performance. Therefore, integrating a signal failure 

detection model with the restoration process is essential 

to improve reliability. 
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