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1. Introduction 

 
During transient conditions in nuclear power plants 

(NPPs), operators follow a series of procedures to 
restore the plant to a safe and stable state. These 
procedures consist of situation awareness, diagnosis, 
and mitigation actions. When properly executed, they 
contribute to maintaining the safety of the NPP. 
However, if human errors occur during the execution of 
these procedures, the situation may worsen. Past 
incidents, such as the Three Mile Island accident, have 
demonstrated that operator errors can exacerbate 
accidents. Therefore, preventing operator errors is 
essential for ensuring the safety of NPPs. 

Although human error can have various causes, one 
of the most significant is operator workload. In recent 
years, research on artificial intelligence (AI)-based 
operator support systems has been actively conducted to 
reduce such workload [1, 2]. Most AI-based support 
technologies focus on improving operators' situation 
awareness and diagnostic capabilities. However, the 
potential for human error during mitigation actions 
should not be underestimated, as inappropriate 
mitigation actions have been identified as critical 
factors contributing to the escalation of past accidents. 

This study proposes a framework aimed at reducing 
human errors that may occur during mitigation actions 
taken by operators under transient conditions in NPPs. 
The proposed framework monitors these mitigation 
actions, evaluates their impact, and provides feedback 
to the operator. This study focuses specifically on the 
impact evaluation component. The evaluation is 
implemented using an artificial intelligence technique 
called the temporal fusion transformer (TFT). The TFT-
based model quantitatively assesses mitigation actions 
based on the plant’s critical safety functions (CSFs). 
The data required for developing the AI model is 
generated using the compact nuclear simulator (CNS). 

Consequently, the impact evaluation function within 
this framework is divided into two components: 
mitigation appropriateness evaluation and mitigation 
golden time estimation. The mitigation appropriateness 
evaluation analyzes the impact of executed mitigation 
actions and provides feedback on whether the actions 
were appropriate or inappropriate. The mitigation 
golden time estimation offers feedback on the optimal 
timing for executing mitigation actions to achieve the 
most stable plant state. This information can help 

minimize human errors during the mitigation process 
and ultimately enhance the overall safety of NPPs. 

 
2. Conceptual Framework 

 
This paper presents a framework designed to 

minimize human errors occurring during operator 
mitigation actions in abnormal conditions of NPPs. The 
framework consists of three main functions: monitoring, 
impact evaluation, and feedback, as illustrated in Fig. 1. 
This framework continuously provides feedback to 
operators, assisting them in making real-time, informed 
decisions. The provided information offers operators an 
opportunity to reconsider their mitigation actions. For 
instance, it allows them to gain confidence in correctly 
executed actions while prompting a reassessment and 
adjustment of erroneous actions. 
 

 
Fig. 1. Conceptual framework for a mitigation action 
monitoring and support system. 
 
2.1 Mitigation Appropriateness Evaluation 

 
The appropriateness of mitigation actions is 

evaluated based on CSFs. As shown in Table I, CSFs 
consist of nine safety functions [3]. Each CSF has 
specific variables for monitoring. For instance, the RCS 
pressure control function monitors the pressurizer 
(PRZ) pressure. To evaluate the appropriateness of 
mitigation actions, these variables are predicted. 
However, it is crucial to ensure that the predictions 
adequately reflect the characteristics of the mitigation 
actions. The prediction results reflecting mitigation 
actions are evaluated using various metrics. For 
instance, in the case of PRZ pressure, multiple alarms 
are used for assessment: (1) PRZ press high alert, (2) 
PRZ press low alert, (3) PRZ high press reactor trip, 
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and (4) PRZ low press reactor trip. The evaluation 
metrics for PRZ pressure are illustrated in Fig. 2. 

 

Table I: List of CSFs 

 Safety function 
1 Reactivity control 
2 Reactor coolant system (RCS) inventory control 
3 RCS pressure control 
4 RCS heat removal 
5 Core heat removal 
6 Containment isolation 
7 Containment pressure and temperature control 
8 Hydrogen control 
9 Maintenance of vital auxiliaries 
 
Fig. 2 illustrates the PRZ pressure during an 

abnormal scenario in which the PRZ spray valve is 
improperly opened. Due to the improperly opened PRZ 
spray valve, the PRZ pressure decreases over time, 
eventually leading to a reactor trip caused by low PRZ 
pressure. In this study, one of the evaluation metrics can 
be chosen to verify whether a specific mitigation action 
maintains the pressure between the “PRZ Press High 
Alert” and the “PRZ Press Low Alert”. Additionally, 
factors such as the rate of pressure change and gradient 
of PRZ pressure are also considered. 

 

 
Fig. 2. Indicators for the appropriateness evaluation of PRZ 
pressure. 
 
2.2 Mitigation Golden Time Estimation 
 

The golden time of mitigation actions is evaluated 
based on the aforementioned assessment metrics. For 
example, in the previously mentioned PRZ spray valve 
opening scenario, the mitigation action involves closing 
the spray valve. The optimal timing for closing the 
spray valve is immediately after the abnormal event 
occurs. However, if operators are informed of the 
available time window before the system stability is 
compromised, they can make decisions without being 
pressured into hasty actions. Fig. 3 illustrates the results 

of performing the mitigation action at different times in 
the PRZ spray valve opening scenario. 

 

 
Fig. 3. PRZ pressure response to different mitigation action 
timings. 

 
If “PRZ Press Low Alert” is adopted as the 

appropriateness criterion for PRZ pressure, the 
mitigation action at 35 seconds can be considered 
appropriate, whereas the action at 50 seconds may be 
inappropriate. In other words, providing such results to 
operators can emphasize the urgency of performing the 
mitigation action within 50 seconds at the latest. 

 
3. Temporal Fusion Transformer 

 
In this study, the TFT method [4] is employed to 

implement the two aforementioned functions. TFT is a 
deep learning architecture tailored for time-series 
forecasting, effectively modeling both short-term and 
long-term dependencies. Unlike conventional recurrent 
neural network-based models such as long short-term 
memory, TFT integrates both gated recurrent units for 
sequential processing and self-attention mechanisms [5] 
for capturing long-range dependencies. This hybrid 
architecture enables TFT to dynamically highlight 
critical features in time-series data while preserving 
sequential information. Fig. 4 presents the overall 
architecture of the TFT model. 

Moreover, TFT incorporates a variable selection 
network, allowing the model to automatically identify 
and prioritize the most relevant input features for 
prediction. This enhances the interpretability of the 
model, providing insights into which factors contribute 
significantly to the forecasting process. 

In this study, the TFT model is trained using 
historical data related to PRZ pressure and other CSF 
parameters. The trained model predicts future system 
states based on operator actions and evaluates the 
appropriateness of mitigation actions. By analyzing 
these predictions, the model provides real-time 
feedback, ensuring that mitigation actions maintain 
system stability within predefined safety thresholds. 
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Fig. 4. Structure of the TFT method. 
 

4. Data Collection and Preprocessing 
 

The data were collected using the CNS, developed by 
the Korea Atomic Energy Research Institute. The CNS 
can simulate normal, abnormal, and emergency 
operations. In this study, we focus on abnormal 
operation simulations. Data from an abnormal scenario 
in which the PRZ spray valve failed in the open position 
were collected. Fig. 5 illustrates the RCS, with the red 
box indicating the PRZ spray valve. 
 

 
Fig. 5. Overview of the RCS in CNS. 

 
The data were collected based on two factors: (1) the 

degree of spray valve opening and (2) the timing of the 
mitigation action. First, the degree of spray valve 
opening was collected in 5% increments, ranging from 
0% (fully closed) to 100% (fully open). Second, the 
timing of the mitigation action was considered at 5, 20, 

30, 60, and 90 seconds after the malfunction injection. 
Additionally, no mitigation actions were applied in the 
0% opening state (normal condition). Furthermore, for 
opening states above 5%, cases without mitigation 
actions were also collected. As a result, a total of 120 
cases were collected, with 80% used for training and 
10% each allocated for validation and testing. 

Data preprocessing involved feature selection and 
normalization. Feature selection was performed using 
the Pearson correlation coefficient, while normalization 
was conducted using the min-max normalization 
method.  

 
5. Experiment 

 
In this study, the TFT method is utilized to predict 

specific variables for evaluating the appropriateness and 
golden time of mitigation actions. These variables are 
safety-related parameters associated with CSFs, as 
listed in Table Ⅱ. 

 

Table Ⅱ: List of target variables 

 Target variable 
1 PRZ water level 
2 RCS subcooling margin 
3 PRZ pressure 
4 Steam generator (SG) water level 
5 SG Pressure 
6 Containment radiation 
7 Containment temperature 
8 Containment pressure 

 
Since the PRZ spray valve opening scenario has 

minimal impact on containment-related parameters (6-8 
in Table Ⅱ), they are not discussed in this study. The 
PRZ pressure is associated with RCS pressure control 
among the CSFs, while the PRZ water level is related to 
RCS inventory control. Since the PRZ spray valve 
opening scenario significantly affects RCS pressure 
control and RCS inventory control, this study focuses 
on PRZ water level and pressure. 

As PRZ pressure has already been described in Figs 2 
and 3, this section focuses on experiments related to 
PRZ water level. Fig. 6 presents the predicted changes 
in PRZ water level based on the timing of the mitigation 
actions. In the cases of 5 seconds (mitigation action at 
35 seconds) and 20 seconds (mitigation action at 50 
seconds) after the abnormal event, the PRZ water level 
remains relatively stable. In contrast, at 30 (mitigation 
action at 60 seconds), 60 (mitigation action at 90 
seconds), and 90 seconds (mitigation action at 120 
seconds) after the abnormal event, unstable variations in 
the PRZ water level are observed. These results indicate 
that operators should execute mitigation actions within 
20 seconds to ensure system stability. Furthermore, this 
study highlights the necessity of considering multiple 
CSFs simultaneously. From the perspective of RCS 
inventory control, the mitigation action can be 
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performed within 50 seconds. However, from the 
perspective of RCS pressure control, it must be 
executed earlier. 

 

 
Fig. 6. Prediction results of PRZ water level based on 
mitigation action timing. 
 

6. Conclusion 
 

This study proposes a framework designed to reduce 
human errors that may occur during mitigation actions 
taken by operators under transient conditions in NPPs. 
The focus of this study is on evaluating the impact of 
mitigation actions. This evaluation is critical to ensuring 
that operator responses do not exacerbate the situation 
but instead contribute to system stability. 

To implement the framework, we adopted the TFT, a 
method capable of handling multivariate time-series 
data while maintaining interpretability. The TFT-based 
evaluation model utilizes CSFs to provide quantitative 
assessments of mitigation actions in terms of both 
adequacy and timing, thereby offering real-time 
feedback to operators. 

The training dataset was generated using the CNS, 
developed by the Korea Atomic Energy Research 
Institute. Data collection focused on abnormal scenarios 
involving PRZ spray valve failures, in which the degree 
of valve opening and the timing of mitigation actions 
varied. A total of 120 cases were collected, including 
scenarios with and without mitigation actions. Feature 
selection was performed using Pearson correlation 
coefficients, and the data were normalized using min-
max scaling. 

The proposed framework supports informed 
decision-making by providing critical feedback on the 
effectiveness and timing of mitigation actions, helping 
operators avoid unnecessary urgency. This approach 
has the potential to enhance the overall safety and 
reliability of nuclear power plants by reducing the 
likelihood of inappropriate actions. Future work will 
aim to improve the predictive accuracy of the model 
and extend its applicability to a broader range of 
abnormal scenarios in NPP operations. 

However, while the effectiveness of the proposed 
approach was validated in a simulated environment, it 
has not yet been verified under real-world conditions in 
an actual NPP. Therefore, pilot testing under realistic 
conditions is essential to confirm the experimental 
results and assess practical feasibility. 
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