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1. Introduction 

 
 
Probabilistic Safety Assessment (PSA) has emerged as 

an essential component in nuclear safety engineering. It 
provides a structured and quantitative approach for 
evaluating the frequency and potential consequences of 
accidents within nuclear power plants. By systematically 
modeling combinations of equipment malfunctions, 
operator errors, and various accident scenarios, PSA 
enables a comprehensive risk assessment. 

Conventional PSA techniques rely on static event tree 
(ET) and fault tree (FT) models to enumerate accident 
sequence and system failures. While the conventional 
approach has been effective in identifying dominant risk 
contributors, it assumes a fixed branching structure of 
events and does not explicitly account for the dynamics 
of accident progression. In reality, nuclear accidents 
evolve over time with complex interactions – equipment 
can degrade gradually, control systems respond in real 
time, and operators take actions at various points. Rigid 
ET/FT method struggle to capture such time-dependent 
behaviors, leading to potential uncertainties. This 
limitation has motivated a transition toward dynamic 
PSA, in which the temporal evolution of scenarios is 
explicitly simulated for more realistic assessment. A 
dynamic PSA approach integrates deterministic system 
simulations (e.g., thermal-hydraulic codes) with 
stochastic scenario sampling, going beyond pre-defined 
event sequences. Moving from static to dynamic PSA 
allows analysts to enhance the accuracy and realism of 
safety assessments [2]. 

Despite its promise, dynamic PSA comes with 
significant challenges. One major issue is the state-space 
explosion problem: as we incorporate time steps and 
more detailed system states, the number of possible 
accident sequence paths grows [3, 4]. This can result in 
an overwhelming explosion of scenarios or system states 
to consider, far beyond what analysts can manage with 
brute-force simulation. Indeed, a dynamic simulation of 
even a single initiating event can branch into countless 
sequences when varying the timing of component 
failures or operator actions. Handling this combinatorial 
complexity often requires heavy computational 
resources and intelligent truncation or sampling 
strategies.  

To address these challenges, researchers have begun 
exploring the use of metamodels (or surrogate models) to 
make dynamic PSA more tractable. The key idea is to 

replace or augment the direct physics-based simulations 
with an approximate model that is much faster to execute. 
In particular, data-driven deep learning models are 
promising metamodel candidates for PSA because of 
their ability to learn complex non-linear mappings from 
inputs to outputs [5]. For example, a trained neural 
network can take as input the parameters of an accident 
scenario (e.g. initiating event, sequence of component 
statuses, timing of events) and instantly predict the 
outcome (such as core damage probability or key system 
parameters), after being trained on a library of simulation 
results. This approach can alleviate the computational 
burden dramatically. Instead of running tens of 
thousands of full simulations for different scenarios, one 
can run a smaller set of simulations to train the 
metamodel and then let the metamodel rapidly evaluate 
millions of what-if scenarios. In essence, leveraging 
metamodels rooted in artificial intelligence can make 
dynamic PSA feasible for practical use by cutting down 
computation time and automating the analysis of myriad 
scenario variations. 

Building on this background, the present study applies 
deep learning-based metamodeling to improve dynamic 
PSA for nuclear power plants.  

We develop a novel PSA metamodel framework that 
leverages an inception-inspired neural network with 
attention mechanisms to predict accident scenario 
outcomes efficiently and accurately. 

This paper extends our previous study entitled 
“Dynamic PSA-based multi-unit accident scenario 
modeling approach,” which provided a comprehensive 
description of the data generation procedures. Hence, in 
this paper, we only summarize the main aspects of data 
generation and instead focus on how the deep learning-
based metamodeling framework is constructed and 
validated. 

 
 
 

2. Data Generation and preprocessing 
 

In this chapter, we describe data that use to train model 
and represent accident scenario. To generate dynamic 
accident scenarios, we used the Modular Accident 
Analysis Program version 5 (MAAP5), a computer code 
capable of simulating severe accident sequences in light 
water reactors. 
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2.1 Data Generation considering dynamic features 

This chapter describes the process of generating data 
for dynamic accident scenarios in nuclear power plants, 
focusing on Loss of Offsite Power (LOOP) and Station 
Blackout (SBO). A LOOP occurs when external power 
is disrupted—for instance, by a damaged transmission 
line—prompting the start-up of Emergency Diesel 
Generators (EDGs). If both EDGs fail, it escalates into 
an SBO. 

We also consider multi-unit operations to reflect how 
backup resources are shared. In an SBO, multiple 
reactors may rely on Alternative AC (AAC) or MACST 
diesel generators, and these shared systems can affect 
more than one reactor simultaneously. Figure 1 provides 
an example timeline showing which components remain 
functional or fail over time, creating several possible 
accident sequences. 

 

 
Figure 1. Simplified example for accident sequence modeling 

 
To analyze these scenarios, we developed a computer 

program that probabilistically determines whether each 
component is in standby, operating, or failed. Details of 
this approach are described in our previous research 
papers1 . 

 
2.2 Data Preprocessing 

First, we extracted key variables (e.g. AC power, high-
pressure safety injection (HPSI), auxiliary feedwater 
system (AFW), portable low-pressure pump (PLPP), and 
containment spray system (CSS)) from the simulation 
text using regular expressions, thereby quantifying the 
operating or non-operating status of each. If a particular 
variable wad undefined, we assigned a sentinel value 
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 Sang Hoon Han, Hyeonmin Kim, Dong-San Kim, “Dynamic PSA-
based multi-unit accident scenario modeling approach,” Korean 
Nuclear Society Spring Meeting, Korea, May 22-23, 2025. 

(e.g., -1). Additionally, if it was determined that no 
failures occurred for the entire simulation period, we 
designated a special value (e.g., 1000) to distinguish that 
case. 

Next, we performed min-max scaling on all variables 
to ensure consistent representation in subsequent 
modeling. Usually, this follows the formula: 

 

𝑥scaled =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

 
where 𝑥  and 𝑥௫  represent the minimum and 

maximum values for each variable. Although the typical 
mapping is [0,1], alternate ranges such as [−1,1] may 
also be used. By keeping relative distances intact, 
smaller-range variables (such as level or temperature) 
and larger-range variable (pressures in the order of 
billions of pascals) can be effectively learned by the same 
model. Otherwise, even small variations in a high-scale 
variable could be misconstrued as a disproportionately 
significant change. 

In complex accident scenarios, the actual probability 
of core damage is generally extremely rare compared to 
normal cases. Due to practical time constraints in 
generating training data, we adjusted the ratio of accident 
occurrences. Empirically, we reasoned that core damage 
would be physically more complex, influenced by denser 
intervals, whereas “OK” cases have a broader 
operational range and can be sampled more sparsely. 
Consequently, we deliberately increased the probability 
of these otherwise low-probability core damage events. 
However, depending on how various probability 
parameters are adjusted, data imbalances can arise (75% 
core damage case, 25% OK case). To address these 
distributions, we employed SMOTE (Synthetic Minority 
Over-sampling Technique) to strengthen the minority 
class. Suppose we have minority-class sample A (in case 
of OK) and we pick one of its k-nearest neighbors B. By 
introducing a random scaler δ ∈ [0,1], a new synthesized 
sample A୬ୣ୵ is computed as: 

 
A୬ୣ୵ = 𝐴 + 𝛿(𝐵 − 𝐴) 

 
This approach expands the distribution of the minority 

class without relying on mere duplication, thereby 
mitigating overfitting risks and promoting the model’s 
ability to learn essential patterns. 

In summary, the sequence of extracting major 
variables, handling missing or special values, applying 
Min-Max scaling, and augmenting data via SMOTE 
forms a more cohesive dataset. Balanced and normalized 
data consequently reduces model sensitivity to extremes 
or minority-class shortfalls, which increases predictive 
reliability in subsequent analyses, such as Dynamic 
Event Tree methods or machine-learning algorithms for 
accident scenario evaluation. The clearer interpretability 
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of results also benefits actual design and safety 
assessment phases, helping to guide more informed 
decision-making. 

 
 

3. Structure of Metamodel 
 

This chapter provides an in-depth overview of the 
developed model, emphasizing its distinctive capability 
to predict core states with only limited input data. Central 
to this predictive capacity is a novel convolutional 
structure that forms the foundation of Convolutional 
Neural Networks (CNNs), leveraging convolutional 
filters for efficient feature extraction. In the context of 
one-dimensional (1D) convolution, where data are 
arranged along a single spatial dimension, the network 
effectively captures local dependencies in time series or 
sequential inputs, supporting tasks such as sequence 
classification and language processing. This multi-scale 
feature extraction approach enables the model to 
construct intricate data representations while preserving 
a relatively small input dimension. 

To achieve robust performance, the proposed 
architecture incorporates an inception-based design [6], 
originally recognized for its high efficiency in image 
recognition domains. The Inception framework excels at 
learning complex patterns across multiple scales, 
optimizing parameter usage, and exhibiting flexible 
structural designs. Specifically, this design allows the 
model to concurrently capture fine-grained and large-
scale patterns, using multi-branch convolutions of 
varying kernel sizes, combined with residual and pooling 
pathways. 

The model consists of four specialized inception 
variants - namely inception_n, inception_s, inception_w, 
and inception_a - each tailored to address different 
spatial scopes and operational requirements: 

 
 Inception_n 
 - Intended for capturing patterns within narrower input 

segments. 
 - Employs 1 × 1 and 3 × 3 convolutions alongside average 

pooling. 
 - Targets localized feature representation by gradually 

expanding the receptive field. 
 
 inception_s 
 - Functions similarly to inception_n by focusing on narrow 

regions. 
 - Incorporates a scaled channel approach that halves the 

output channel size relative to inception_n, helping mitigate 
gradient vanishing issues. 

 - Balances representational power and computational 
efficiency. 

 
 inception_w 
 - Optimized for capturing features over broader input 

segments. 
 - Deploys larger kernels (e.g., 15 × 15, 17 × 17) to learn 

longer-range patterns. 

 - Targets inputs where extended temporal or spatial 
dependencies are critical. 

 
 inception_a 
 - Extends inception_n’s structure by integrating a self-

attention mechanism. 
 - Improves global context modeling, enabling the network 

to highlight key features beyond local receptive fields. 
 
The self-attention component, inspired by transformer 

architectures, facilitates parallel attention across multiple 
feature representations, affording significantly improved 
performance on various deep learning tasks [7]. 
Meanwhile, the model’s overall non-linearity is 
enhanced by the Gaussian Error Linear Unit (GELU) 
activation function, while training stability benefits from 
batch normalization and residual skip connections. These 
design choices collectively yield a model that can capture 
salient features at multiple scales and emphasize those of 
greatest importance. 

Extensive empirical evaluations led to a final model 
structure comprising three repeated blocks, each 
followed by a fully connected layer. Although 
inception_w was implemented to capture broad input 
segments with large kernels, we ultimately did not 
include it in the final architecture after empirical 
evaluations. Each block contains a sequence of 
submodules (s → n → n → b → a), specifically: 

 
- Inception_s (s) 
- Inception_n (n) 
- Inception_n (n) 
- Batch Normalization (b) 
- Inception_a (a) 
 
After the repetition of these three blocks, the model 

transitions to a fully connected (FC) layer comprising 
1024 units. This architecture can be succinctly expressed 
as: 

 
3 × [s-n-n-b-a] + FC(1024) 
 
By blending multi-scale inception paths, attention-

based global modeling, residual connections, and 
advanced activation functions, the proposed model 
efficiently handles large-scale sequences with minimal 
input requirements. In practice, this approach yields high 
predictive accuracy for core status monitoring under 
complex scenarios, while imposing relatively modest 
demands on input dimensionality and computational 
overhead. 

As the final step in data preprocessing, the complete 
dataset was split into three subsets: train, validation, and 
test. First, 10% of the entire dataset was set aside as the 
test set to be used exclusively for the final evaluation of 
model performance. Form the remaining 90%, another 
10% was separated as the validation set, while the 
remaining 80% served as the train set. This split design 
ensures that the model is initially trained on the train set. 
During training, the validation set is used to prevent 
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overfitting by tuning hyperparameters. Finally, the test 
set is utilized to measure prediction performance, thereby 
verifying how well the model generalizes to new, unseen 
data. 

 
 

4. Results 
 
Table 1 compares performance metrics of the 

developed model classification model without and with 
SMOTE. When SMOTE was applied, the accuracy 
slightly increased from 0.9700 to 0.9710. Although the 
recall decreased from 0.9895 to 9750, the precision 
increased markedly 0.9716 to 9867. Consequently, the 
F1 score improved slightly from 0.9805 to 0.9808. These 
outcomes indicate that applying SMOTE boosts the 
model’s overall precision and maintains a balanced 
performance across different metrics. Figure 2 further 
illustrates how the SMOTE-enhanced model performs 
across various data points. 

 
Table 1. Comparison of performance metrics by SMOTE 

Metric Without SMOTE With SMOTE 
Accuracy 0.9700 0.9710 
Precision 0.9716 0.9867 

Recall 0.9895 0.9750 
F1 Score 0.9805 0.9808 
 

 
Figure 2. Results of developed model by SMOTE 

 
One of the most critical obstacles in dynamic PSA 

involves mitigating the so-called “state explosion,” 
wherein the computational burden escalates 
exponentially in response to increasing accident-scenario 
complexity. The present study illustrates that, although 
achieving high predictive accuracy is indispensable, 
computational efficiency, especially inference speed, 
merits equal attention. For instance, simulating 10,000 
LOOP-SBO accident scenarios using MAAP5 on a 24-
core system can require roughly ten days, whereas a 
trained model can evaluate the same set of scenarios in 
approximately 7.5 s on an NVIDIA RTX 6000A GPU. 
This contrast in runtime clearly demonstrates the 
practical benefits conferred by faster inference methods. 

 
 

3. Conclusions 
 

A contribution of this work lies in its comparative 
analysis of models trained with and without SMOTE, 
revealing a notable trade-off between precision and 
recall. While both approaches achieve approximately 97% 
accuracy and an F1 score near 0.98, the SMOTE-based 
model attains higher precision but exhibits a modest 
decline in recall, whereas the non-SMOTE model 
preserves better recall at the expense of slightly lower 
precision. Consequently, the decision as to which 
approach to adopt depends heavily on the relative costs 
of false negatives versus false positives within a given 
nuclear safety context. In scenarios where missing a core 
damage event poses disproportionate risks, a model 
favoring recall (i.e., the non-SMOTE approach) proves 
more suitable. Conversely, if the burden of false alarms 
introduces undue operational complications, a model 
with SMOTE’s enhanced precision may be the better 
choice. In addition, targeted hyperparameter tuning, such 
as adjusting the SMOTE ratio or optimizing the decision 
threshold, can refine the balance between recall and 
precision to suit specific risk tolerances and cost 
structures. 

Finally, this study underscores the importance of 
presenting model results with explicit measures of 
uncertainty, for example, confidence intervals for the 
main performance metrics, to bolster decision-making in 
safety-critical environments. Future work could include 
ablation studies or other forms of sensitivity analysis to 
map more precisely the influence of class-imbalance 
strategies, threshold settings, and cost-sensitive learning. 
Ultimately, while model accuracy remains a cornerstone 
of dynamic PSA, the ability to execute large-scale 
accident-scenario simulations rapidly may prove just as 
essential for managing nuclear power plant operations 
both safely and efficiently. 
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