
Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 22-23, 2025 

 
 

Conceptual Problem-Based Verification of the Containment Thermal-Hydraulics Analysis 
Module for Severe Accident Analysis 

 
Kum Ho Han, Jehee Lee, Yeon-Jun Choo* 

FNC Tech., Heungdeok IT Valley, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 446-908, Korea 
*Corresponding author: yjchoo@fnctech.com 

 
*Keywords : Containment, Thermal-hydraulics, Verification 
 

 
1. Introduction 

 
Korea’s severe accident regulation relies on codes 

developed under the sponsorship of the U.S. Nuclear 
Regulatory Commission (NRC), such as MELCOR [1]. 
The NRC stopped sharing their source codes. This 
makes it inconvenient to adjust the current approach to 
severe accident regulations for Korea. Consequently, 
the development of an analysis code for severe accident 
regulations is required. As part of this initiative, a 
module designed to predict the thermal-hydraulic 
behavior of ex-vessel is under development. This 
module has been tentatively named SAVANNAH. 

SAVANNAH is a lumped-parameter-based code that 
partitions the containment into two phases: the water 
pool and the atmosphere. And it adopts the numerical 
scheme similar to those of MELCOR. The code 
assumes that the water pool contains only liquid water 
and water vapor, whereas the atmosphere comprises 
solely water vapor and non-condensable gases. To 
verification SAVANNAH in this study, several 
conceptual problems were selected, and the calculation 
results obtained from SAVANNAH were compared 
with those of MELCOR. 

 
2. Discretized Governing Equations 

 
Fig. 1 illustrates an example of the connectivity 

between compartments and flow paths in SAVANNAH. 
A single compartment can be linked to multiple flow 
paths, with their positions flexibly specified within the 
compartment. This chapter presents the discretized 
governing equations of SAVANNAH. 

 

 
Fig. 1. Example connections between compartments and flow 
paths 
 
 

2.1 Discretized Mass Equation 
 𝑀௜,௠௡ − 𝑀௜,௠௡ = ∑ 𝜎௜௝𝛼௝,థ௡ 𝜌௝,௠ௗ 𝑣௝,థ௡ 𝐴௝∆𝑡௝ + 𝛿𝑀௜,௠    (1) 

 
Eq. (1) expresses the discretized mass conservation 

equations for each material within compartment i. Here, 
the subscript i denotes the compartment index, m 
represents the material index (where 1 corresponds to 
pool water, 2 to water vapor in the atmosphere, and 3 
onward to non-condensable gases), Φ indicates the 
phase (either pool or atmosphere), and j signifies the 
flow path index. The superscript d denotes the upstream 
(donor) compartment value, n represents the current 
time step, and o indicates the previous time step. The 
variable M୧,୫  denotes the mass of material m in 
compartment i, δM୧,୫  represents the external mass 
source, and σij describes the connectivity between 
compartment i and flow path j. The value of σij depends 
on this connectivity: it is – 1 if compartment i is linked 
to the 'from' direction of flow path j, 1 if linked to the 
'to' direction, and 0 if no connection exists. The primary 
unknowns in this discretized mass conservation 
equation are the mass of each material (M୧,୫୬ ) and the 
velocity of each phase in the flow path (v୨,ம୬ ). 

 
2.2 Discretized Energy Equation 

 𝐸௜,థ௡ − 𝐸௜,థ௡ = ∑ 𝜎௜௝𝛼௝,థ௡ (𝜌௝,௠ௗ ℎ௝,௠ௗ )𝑣௝,థ௡ 𝐴௝∆𝑡௝ + 𝛿𝐸௜,థ(2) 
 

Eq. (2) expresses the discretized energy conservation 
equations for each phase within compartment i. Here, E୧,ம represents the total internal energy of phase Φ in 
compartment i, and δE୧,ம  denotes the external energy 
source. The primary unknowns in this discretized 
energy conservation equation are the internal energy of 
each phase (E୧,ம୬ ), and the velocity of each phase in the 
flow path (v୨,ம୬ ). 

  
2.3 Discretized Momentum Equation 

 𝑣௝,థ௡ = 𝑣௝,థ௢ + ∆௧ఘೕ,ഝ௅ೕ ቂ𝑃௜௡෤ + ∆𝑃௣௣ − 𝑃௞௡෤ + (𝜌𝑔∆𝑧)௝,థ௡෤ −ቀ𝑓 ௅ೕ஽ + ∑ 𝐾ቁ ఘೕ,ഝଶ ൫ห𝑣௝,థ௡ିଵ + 𝑣௝,థ௡ିଶห𝑣௝,థ௡ − ห𝑣௝,థ௡ିଶห𝑣௝,థ௡ିଵ൯ቃ (3) 
 
Eq. (3) describes the discretized momentum 

conservation equation for each phase in flow path j, 
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Fig. 6. Case 3: natural circulation based on density differences 
 

 
Fig. 7. Case 4: gas injection and advection 

 
3.2 Conceptual Problem Calculation 
 

Figs. 8 and 9 present the calculation results for 
conceptual problem Case 1, obtained using MELCOR 
and SAVANNAH. These results confirm that 
SAVANNAH predicts thermodynamic states according 
to energy change with equivalence to MELCOR. Figs. 
10 and 11 compare the analysis results of both codes for 
conceptual problem Case 2, demonstrating that they 
predict pressure and temperature equivalently based on 
variations in mass and energy. 

Figs. 12 and 13 display the analysis results for Case 3. 
These graphs illustrate that the temperature of Cell #1, 
initially increases, and then decreases as the natural 
circulation flow rate rises, ultimately stabilizing at a 
steady state. Finally, Figs. 4 to 18 depict the analysis 
results for Case 4. Figs. 4 to 16 show the mass flow 
rates of FL#2, #4, and #5, respectively. These figures 
reveal that fluid descends at the center of the 
compartments (Cells #3 and #4) and ascends at both 
ends. In the analysis of both codes, a downward flow 
occurs at the center of the compartment, resulting from 
the omission of momentum flux. Consequently, the 
fluid flow is governed by the pressure difference. Figs. 
17 and 18 present the N2 and H2O mass changes in Cell 
#6, respectively. During the initial 300 seconds of air 
injection, SAVANNAH predicts the steam mass with 
slight deviations from MELCOR; however, beyond this 
period, the predictions of both codes converge closely. 

 

 
Fig. 8. Case 1: pressure 

 

 
Fig. 9. Case 1: temperature 

 

 
Fig. 10. Case 2: pressure 

 

 
Fig. 11. Case 2: temperature 

 

 
Fig. 12. Case 3: temperature of cell #1 
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Fig. 13. Case 3: mass flow rates between cell #1 and cell #2 

 

 
Fig. 14. Case 4: mass flow rates of FL#2 

 

 
Fig. 15. Case 4: mass flow rates of FL#4 

 
Fig. 16. Case 4: mass flow rates of FL#5 

 

 
Fig. 17. Case 4: N2 mass of cell #6 

 

 
Fig. 18. Case 4: steam mass of cell #6 

 
4. Conclusion 

 
Korea’s reliance on NRC-sponsored codes like 

MELCOR for severe accident regulations has been 
challenged by the NRC’s decision to withhold source 
codes. SAVANNAH, a lumped-parameter-based code 
currently under development, addresses this by 
predicting ex-vessel thermal-hydraulic behavior with 
numerical methods akin to MELCOR. Verification 
through conceptual problems (Figures 4–18) confirms 
that SAVANNAH predicts conceptual problem similar 
with MELCOR. For Case 4, SAVANNAH predicts 
flow behavior similarly to MELCOR, though slight 
differences in values are observed. This discrepancy is 
attributed to variations in the procedures for 
determining flow path velocities when complex flow 
path connections are involved. 
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