

Construction of a Fault Analysis and Normal-State Database for Safety-Grade PLC Modules in Nuclear Power Plants

2025. 05. 23.

CHO GI HO

01. Introduction

- Digital I&C systems enhance operational reliability
- Sudden failures in PLC modules pose critical risk
- Preventive maintenance is periodic, not condition-aware
- Need: Condition-based diagnostics using real data

01. Introduction

- Target: POSAFE-Q PLCs in APR-1400 Reactor Protection System
- Focus on failure analysis and diagnosis
- Contribution: DB supports predictive maintenance in nuclear safety systems
- Extends beyond literature by collecting real-world V-I curve data

01. Introduction

- Classify fault types and mechanisms in PLC modules
- Reproduce realistic failure scenarios
- Build scalable and structured waveform database
- Enable real-time anomaly detection and AI integration

02. Fault Analysis

- Definition of failure
 - Failure : The inability of a system or component to perform its required function within specified limits.
 - Fault : A defect in a hardware component that has the potential to cause a failure.
 - Defect : A physical imperfection or flaw in a hardware component.
 - Error : A discrepancy between a computed, observed, or measured value or condition and the true, specified, or theoretically correct value or condition.

용어		정의	예시	
Failure 고장		시스템이 의도된 기능을 수행하지 못한 상태 (결과적 으로 사용자에게 노출)	전원이 들어오지 않음, 출력 오류 발생	
Fault	고장 원인 결함	오류를 유발하는 물리적 또는 논리적 원인 (회로 이상, 전원 불량, 비트 플립 등)	NAND 게이트 단선, 캐패시터 누 설	
Defect	결함 하자	제조 또는 설계 시 존재하는 물리적 불량 (잠재적으로 fault를 유발)	PCB 납땜 불량, 설계 누락	
Error	오류	하드웨어가 잘못된 출력을 생성하거나, 잘못된 동작을 수행한 상태 (일시적, 확률적일 수 있음)	EMI 간섭으로 데이터 비트 반전	

02. Fault Analysis

Classification of failures

02. Fault Analysis

- Classification of failures (cause-base)
 - **Time base :** Early, Random, Wear-out failures
 - Cause base : Design flaws, manufacturing defects, misuse
 - Stress categories : Electrical, Thermal, Mechanical, Radiation

- Scope of Database Construction for PLC Condition Diagnosis
 - The database construction focuses on modules applied to the Reactor Protection System (RPS) of APR-1400 (Shin-Kori Units 5 and 6)

Туре	Model			
Power	NSPS-2Q			
CPU	NCPU-2Q			
NETWORK	NFD2-1Q, NFD1-5Q, NFD1-6Q			
AI	NADF-1Q, NAD8-3Q			
PI	NHSC-1Q			
DI	NI-D23Q			
DO	NQ-D23Q, NQ-A24Q			

- Types of PLC Condition Diagnosis Data
 - Relay: Condition assessment through voltage and current waveform analysis following activation of the driving coil pulse power.
 - Resistors, Inductors, Capacitors, Diodes: Condition assessment using current characteristics in response to input voltage
 - Operational Amplifiers (Op-amps): Condition assessment through channelwise gain (linear test) and IC saturation tests
 - Comparators: Condition assessment through IC saturation tests
 - Transistors / MOSFETs: Condition assessment using current characteristics in response to input voltage.
 - Regulators: Condition assessment based on predefined input voltage and output voltage measurements.

820 Ohm Resistor <u>SETTINGS</u> Frequency : 1.2kHz Source Impedance : 1k Ohms Curve : sine wave Voltage : 10V peak to peak

 10mH Inductor

 SETTINGS

 Frequency :
 1.2kHz

 Source Impedance :
 100 Ohms

 Curve :
 triangle wave

 Voltage :
 4V peak to peak

 BZX55C5V1 Zener Diode

 SETTINGS

 Frequency :
 60Hz

 Source Impedance :
 1k Ohms

 Curve :
 sine

 Voltage :
 20V peak to peak

0.47uF Capacitor <u>SETTINGS</u> Frequency : 4.8kHz Source Impedance : 100 Ohms Curve : sine wave Voltage : 2V peak to peak

 1N4148 Diode

 SETTINGS

 Frequency :
 60Hz

 Source Impedance :
 1k Ohms

 Curve :
 sine

 Voltage :
 6V peak to peak

PNP Transistor <u>SETTINGS</u> Frequency: 120Hz Source Impedance: 1k Ohms Voltage: 4V peak to peak Pulse Type: Bipolar: (V+ 0.12) (V- -0.7V) Positive start: 0us stop: 4.18ms Negative start: 4.18ms stop: 8.33ms

The V-I Curve data for voltage and current characteristics is injected in the form of a sine wave at each measuring point, separated into 1024 measuring range voltages (e.g. -5 ~ 5V), and the current value is stored.

74LS00		Start Setup Rotate Actual			V	
QUAD 2 INPUT NAND G	ATE					
Library				-		
amily: All		10	1	Logic Hace	10	
art	1	1A			10.	
100101		18	1		10 AL 10 AL 10	4 8 4 8 4
100101		12			 (a) (b) (b) (c) 	19 10 19 10 19
100102		24	1 A 3	(1) (1) (1) (1) (1) (1) (1) (1)		3 X 2 X 3
100107		ZA				
100112		2B	14	N 50 N 50 S	1.1	
100113		2Y	5			
100117		GND		i de tierde el	61-10 fit 1	
100118 100121 -		3Y	-			
		36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			19 10 1 <u>9 100 19</u>
un Mode		20	<u> 12</u>	0 10 10 10 10	10 AD 10 AD 10	
oon Made) 38		The second second	-12 (a) +12 (a)	
Single		1 4Y			2	
Loop		2 4 A				
True loop		3 4B				
False loop		4 VCC			20102 2012 20	- 21 - 21 - 10 - 1
unning: 1	N/A	Contraction (1997)	11 II 👾 🖻	"采 花米 花米	化苯 化苯 五	* * * * *
ass: 1 Fall: 1	N/A					
	Ŀ					
esults		1				1.
Truth table test Comparis		est result(s)				1
ictual	Connections	D	igital V-I 🛛 🖉			

04. Data Structures

05. Data Utilization

Board fault Detection (NCPU Memory, Reference Clock)

SCOSAN ENS

State Diagnosis

- Normal Operation
 - ✓ Performance degradation observed, but functional requirements are met
- Anomaly:
 - ✓ Irregular or abnormal condition compared to normal operation
 - ✓ Performance degradation:
 - Component-level degradation
 - Board-level degradation
 - System-level degradation
- Failure:
 - Unable to perform required functions
 - Hardware failure
 - Software error
 - Combined HW + SW error

06. Future Work

- Expand DB to additional modules
- Integrate real-time monitoring systems
- Train and deploy AI-based classification models
- Link to condition-based maintenance protocols

07. Conclusion

- Developed method for structured failure analysis
- Built and applied diagnostic DB with real measurement data
- Enhances predictive maintenance in nuclear PLCs

07. Acknowledgments

- Funded by National Research Foundation of Korea
- Supported by Ministry of Science and ICT (Project No. RS-2022-00144239)

Thank you for your attention