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1. Introduction 

 
Accurate simulation of incompressible laminar flows 

is imperative in fluid dynamics modeling. However, 

traditional numerical methods frequently encounter 

challenges concerning computational intensity and 

geometric complexity [1-2]. Physics-Informed Neural 

Network (PINN) presents a compelling alternative by 

integrating the Navier-Stokes equations into neural 

network frameworks, effectively serving as PDE solvers. 

The efficacy of PINN is contingent on the initial 

parameter settings, which considerably influence 

convergence speed and solution accuracy [3-4]. 

This paper explores the application of meta-learning 

techniques to refine these initial parameters, with the aim 

of improving both the generalizability and efficiency of 

PINN. By learning meta-parameters that represent a 

global optimization solution, we extend the applicability 

of PINN across varied fluid dynamics scenarios. This 

study demonstrates how meta-learning can significantly 

broaden the solution space, offering an effective strategy 

for faster adaptation to the complexities of modeling 

incompressible laminar flows. 

 

2. Methods and Results 

 

2.1 PINN for Steady-state Incompressible Flow 

 

In this study, the focus is on two-dimensional, steady-

state, incompressible laminar flow, which can be 

described by the Navier–stokes equations. The 

conservation of mass is expressed by the following 

equation: 

 

𝛻 · 𝐮 =  0  (1) 

 

where 𝐮 = (𝑢𝑥, 𝑢𝑦)  represents the velocity field. The 

momentum conservation equation, neglecting external 

body forces, is stated in Equation (2): 

 

   (𝐮 ·  𝛻)𝐮 =  −𝛻𝑝 +  𝜈𝛻2𝐮 (2) 

 

where 𝑝 denotes the pressure field and 𝜈 is the kinematic 

viscosity. The central concept of this study is to embed 

this physical knowledge within the PINN. Specifically, 

the PINN consists of a multi-layer perceptron (MLP) that 

takes spatial coordinates 𝐜 =  [𝑥, 𝑦]  as inputs and 

outputs the velocity and pressure fields, i.e., 

(𝑢𝑥(𝐜), 𝑢𝑦(𝐜), 𝑝(𝐜)). The training of the PINN is guided 

by a total loss function, 𝐿𝑡𝑜𝑡𝑎𝑙, which enforces both the 

governing equations and the boundary conditions. This 

total loss is defined by Equation (3): 

 

𝐿𝑡𝑜𝑡𝑎𝑙  =  𝐿𝑟𝑒𝑠  +  2𝐿𝑏𝑐  (3) 

 

where 𝐿𝑟𝑒𝑠 captures the residual errors for Equations (1) 

and (2), and 𝐿𝑏𝑐 penalizes deviations from the required 

Dirichlet or Neumann conditions at the domain 

boundaries. The factor of 2 is used here to weight the 

boundary condition loss appropriately. 

To sample the physical domain more thoroughly, 

Latin Hypercube Sampling (LHS) is employed, which 

disperses collocation points (i.e., the points at which Eq. 

(1) and (2) are enforced) throughout the fluid region in a 

statistically uniform manner, thereby enhancing the 

generalization capability of the network. 

In summary, the PINN for incompressible laminar 

flow is designed to satisfy Eq. (1) and (2) by minimizing 

the total loss function in Eq. (3). This incorporation of 

core physical constraints continuity, momentum 

conservation, and boundary conditions directly within 

the training process. 

 

2.2 Meta-learning Strategy 

 

To enhance the adaptability of the PINN across varying 

obstacle geometries, we employ a meta-learning 

approach that aims to find a set of robust initial 

parameters, denoted by 𝜃𝑚𝑒𝑡𝑎. In the meta-training phase, 

we only use a single circular obstacle while 

systematically altering its size or position in the domain 

across multiple training instances. By consecutively 

training on these different circle-based configurations, 

the network learns fundamental flow features and 

converges to 𝜃𝑚𝑒𝑡𝑎 , which encodes generalized 

knowledge of incompressible laminar flow around 

circular shapes. 

Once 𝜃𝑚𝑒𝑡𝑎  is established, it serves as the initial 

parameter set for fine-tuning the PINN on more complex 

domains. Even when faced with entirely different shapes 

such as triangles or rectangles the initialization derived 

from circles allows the model to converge more rapidly 

and achieve higher accuracy than a randomly initialized 

network. In principle, this approach capitalizes on shared 

flow characteristics learned from circular obstacles and 

extends them to other geometrical contexts with minimal 
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additional training. 

 

2.3 Experimental Details 

 

A series of experiments was designed to illustrate the 

benefits of the proposed meta-learning strategy. The 

computational domain, measuring 1.1 m in length and 

0.41 m in height, is employed to fine-tune the PINN, as 

illustrated in Fig. 1. The fluid has a dynamic viscosity of 

2 × 10−2 kg/(m·s) and a density of 1 kg/m3. The velocity 

profile is defined as 𝒖(0, 𝑦) = 4𝑈𝑚𝑎𝑥(𝐻 − 𝑦)𝑦/𝐻2 

with 𝑈𝑚𝑎𝑥 = 1.0 m/s, ensuring the flow remains laminar 

by maintaining a small Reynolds number. 

During the meta-training phase, the same domain is 

utilized, but only a single circular obstacle, whose 

position or size is varied, is used to generate multiple 

training configurations. The meta-training phase 

involves a total of 5,000 cycles, with five circle 

configurations selected at random from a pre-generated 

set in each cycle. The PINN is trained sequentially for 

two iterations per configuration. 

The network architecture consists of the MLP with one 

input layer, eight hidden layers of 40 neurons each, and 

one output layer producing 𝑢𝑥(𝒄), 𝑢𝑦(𝒄), and 𝑝(𝒄). The 

training process utilizes the Adam optimizer with a 

learning rate of 5×10-4 and approximately 20,000 

collocation points, which are uniformly distributed via 

LHS. 

 

 

2.4 Experimental Results 

 

In this study, a comparison was made between two 

primary models: one model is a PINN that was trained 

from the beginning, while the other is a PINN that was 

initialized with meta-learned parameters. The training 

loss trends reveal that the meta PINN converges at a 

faster rate and achieves a lower overall loss, as illustrated 

in Fig. 2. Of particular note is the purple dotted line at 

approximately 50,000 iterations, which marks the point 

at which the meta PINN achieves a loss value lower than 

the minimum value recorded by the scratch PINN, and 

the green dotted line at around 100,000 iterations, which 

indicates the lowest loss attained by the scratch PINN. 

It is noteworthy that, despite initializing the PINN 

with meta parameters derived from a domain containing 

solely a circular obstacle, the model, as illustrated in Fig. 

3 and Table 1, attains a similar solution with fewer 

iterations. By leveraging the flow characteristics 

acquired from the circular domain, the PINN adapts 

more efficiently to complex geometries, achieving rapid 

convergence and a lower final loss. This meta-parameter 

approach facilitates the incorporation of essential flow 

characteristics and boundary features, thereby promoting 

a more robust and accurate solution for complex 

geometries. 

 

 

Fig. 2. Comparison of training loss trends for the scratch 

PINN and the meta PINN. 

 

Fig. 3. Analysis of velocity and pressure fields: (a) scratch 

PINN after 100,000 iterations, (b) meta PINN after 50,000 

iterations initialized from meta parameters, and (c) reference 

solution from OpenFOAM. 

Table I: Evaluation of mean absolute error in velocity and 

pressure fields across different models. 

Model 𝒖𝒙 (m/s) 𝒖𝒚 (m/s) Pressure (Pa) 

Scratch PINN 0.2211 0.0741 1.4979 

Meta PINN 0.2214 0.0738 1.5005 

 

3. Conclusions 

 

This study proposes a meta-learning-enhanced PINN 

framework, designed to enhance convergence speed 

while maintaining accuracy in solving steady-state 

incompressible laminar flow problems. The framework 

is trained initially on simpler circular domains, 

demonstrating effective knowledge transfer and faster 

adaptation to a more complex geometry incorporating 

features such as triangles and rectangles. This 

underscores the efficacy of employing a robust 

initialization strategy in PDE solvers based on PINN, 

mitigating the likelihood of converging to local minima 

and enhancing solution accuracy. 

The optimized meta-parameters provide deeper 

insights into flow phenomena, such as boundary-layer 

formation and wake behavior, by preserving critical 

Fig. 1. Schematic of the computation model. 
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domain-specific features. This approach enhances PINN 

stability and computational efficiency, showing promise 

for diverse fluid-flow scenarios. Leveraging this 

adaptability, subsequent studies will concentrate on 

systematically testing its performance across a broad 

spectrum of geometries to rigorously validate its 

robustness and consistently high average performance, 

thereby confirming its generalizability. Furthermore, we 

will focus on the implementation of this framework in 

transient flows and even more intricate domains, with a 

focus on parameter optimization and domain 

decomposition methods. This will serve to broaden the 

capabilities of PINN in the realm of computational fluid 

dynamics. 
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