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1. Introduction 

 

Deep learning has recently emerged as a promising 

tool across diverse engineering domains [1, 2], offering 

significant potential for supplementing or advancing 

traditional methods in reactor physics [3]. By leveraging 

large-scale datasets for pattern recognition and 

predictive modeling, deep learning can enable more 

comprehensive understandings of complex problems 

and provide effective solutions to high-dimensional 

challenges. Among the many deep learning frameworks, 

Physics-Informed Neural Networks (PINNs) [4] have 

gained significant attention. PINNs embed fundamental 

physical principles—often expressed as partial 

differential equations (PDEs)—directly into the neural 

network structure, diminishing reliance on large labeled 

datasets and guiding models toward physically 

consistent solutions. They have demonstrated success in 

various fields such as fluid mechanics, structural 

analysis, and electromagnetics [5, 6, 7]. They also have 

been applied to core reactor physics problems, including 

point kinetics [8] and neutron diffusion eigenvalue 

analyses [9, 10]. 

Deep learning models—including PINNs—often serve 

as surrogate models in engineering contexts involving 

repetitive calculations or high-dimensional design 

spaces, thus reducing computational costs and 

simplifying analysis. From a direct solver perspective, 

researchers have also explored PINNs for directly 

solving PDEs or enhancing traditional numerical 

methods. Nonetheless, many published studies remain 

confined to single or fixed problem setups, leading to a 

need for retraining when different physical systems or 

design conditions arise. Overcoming this limitation 

requires more generalized representations of the 

governing physics and learning strategies capable of 

handling diverse parameters. Consequently, while 

PINNs show considerable promise for reactor physics, 

further work should focus on combining physics-based 

constraints with deep learning and improving 

generalization—key steps toward establishing these 

methods as more robust and widely applicable tools in 

future reactor analysis. 

Building on this concept, this study introduces a 

convolutional neural network (CNN) -based PINNs 

framework for solving the neutron diffusion equation in 

PWR cores. This model predicts both flux distributions 

and the effective multiplication factor (keff) for multiple 

core configurations using a single, unified network. 

Rather than relying on explicit spatial coordinates or 

requiring separate training for each configuration, our 

approach employs node-wise material properties and is 

trained solely through first-principles equations—

namely, the governing physics and boundary 

conditions—without any pre-existing labeled datasets.        

As a result, the model can be extended to novel core 

loading pattern sharing the same cross-section dataset 

without retraining, offering considerable scalability and 

computational savings. This flexibility underscores both 

the robustness and efficiency of the proposed CNN-

based PINNs approach, paving the way for broader 

deployment of deep learning in practical nuclear 

engineering applications. 

 

2. Methods 

 

The two important considerations in designing a 

PINNs approach are (1) the formulation of the loss 

function and (2) the selection of inputs and the neural 

network architecture. This section describes how these 

elements are configured in our method. 

 

 2.1 Physics-Informed Neural Networks 

PINNs integrate known physical laws, often expressed 

as differential equations, directly into their loss 

functions [4]. Unlike purely data-driven models—which 

rely on large volumes of labeled input-output pairs—

PINNs combine limited or even no labeled data with 

physics-based constraints. The loss function typically 

has two components: one comparing network 

predictions to available data, and another enforcing the 

governing equations at collocation and boundary points. 

At these points, the model checks its predictions 

against the physics; if the residual—defined as the 

discrepancy from the governing equation—is large, the 

network adjusts its weights to reduce it. This process 

guides PINNs to solutions consistent with established 

physical laws, even with relatively small datasets. 

Consequently, PINNs are especially valuable in 
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scientific and engineering applications where adherence 

to physical principles is critical. 

 

2.2 Application of a CNN-based PINNs to the Neutron 

Diffusion Equation 

 

We now detail how our CNN-based PINNs framework 

is adapted for the two-group neutron diffusion equations 

in PWR cores. Below, we first describe the inputs and 

neural network architecture on Section 2.2.1, followed 

by the physics-informed loss function on Section 2.2.2. 

 

2.2.1. Inputs and Neural Network Architecture 

 

Classical PINNs use explicit spatial coordinates (e.g., 

x, y, z) as inputs, enabling direct calculation of spatial 

derivatives via automatic differentiation. Here, we 

employ a CNN-based approach that uses node-wise 

material properties, which is expressed as cross sections 

for inputs. This method enables the model to generalize 

across different reactor core loading patterns, provided 

they share the same cross-section dataset, thereby 

avoiding retraining for each new configuration. 

Inputs are node-wise two-group cross sections (XSs) 

for a discretized M×M lattice, organized into a 4D 

tensor (N, 7, M, M), where N is the batch size. These 

XSs include the diffusion coefficients, 1

iD  and 2

iD , the 

absorption XSs, 1

i

a and 2

i

a , the fission yield XSs, 

1

i

f and 2

i

f  for both fast and thermal group and the 

fast-to-thermal scattering XSs,
12

i

s  for each node i. 

The network architecture employs a modified UNet 

[11], which is based on convolutional neural networks 

(CNN). It features a contracting (encoder) path to 

capture global patterns and an expansive (decoder) path 

to produce high-resolution outputs, with skip 

connections between corresponding levels.  

A key aspect of the proposed model is its dual‐output 

scheme, which predicts both the flux distribution and keff 

within a single model. After the decoder stage of UNet, 

the final convolutional layer outputs the flux distribution 

in the shape of (N, 2, M, M), where N and M match the 

input dimensions, and 2 corresponds to the two energy 

groups in the neutron diffusion equation. This flux 

outputs are then flattened and passed through fully 

connected layers to produce a scalar value for keff. By 

training these two outputs simultaneously, the network 

exploits the intrinsic relationship between flux and keff, 

enhancing overall consistency and reducing the need for 

separate models. Finally, both outputs are then fed into 

the loss function to measure how well the predicted 

values satisfy the governing equations, which is 

explained in the next section. 

 

2.2.2. Physics-Informed Loss Function 

To train the CNN-based PINNs, we define a physics-

based loss term derived from the two-group neutron 

diffusion equations, which can be written as: 

 2 2
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Because our inputs are grid-based node properties 

rather than continuous spatial coordinates, we cannot 

apply automatic differentiation for second-order terms. 

Instead, we use the FDM box scheme to compute spatial 

derivatives. The residual at each node measures how 

closely the predicted flux satisfies the neutron diffusion 

equations. We then take the mean squared residual 

across all nodes as the physics-based loss: 

 
2
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N N
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  (1.3) 

where ( , )ef i j  is the residual at node (i, j).  

Boundary nodes are treated with the same FDM box 

scheme. By incorporating these constraints into the 

FDM equations at the boundary nodes, we ensure that 

the governing neutron diffusion principles hold over the 

entire domain, including its edges. Consequently, the 

boundary conditions become an integral part of the 

physics-informed residual, eliminating the need for 

additional data or post-processing steps. This combined 

approach ensures that the CNN-based PINNs satisfy 

both the FDM-based spatial discretization and the 

fundamental neutron diffusion equations throughout the 

entire reactor core lattice. 

 

3. Experimental Setup 

 

To evaluate the proposed CNN-based PINNs 

framework, we employ the 2D IAEA PWR benchmark 

problem [12], which represents a typical PWR core 

comprising 177 fuel assemblies arranged in quarter-core 

symmetry. By varying the assembly loading patterns 

while preserving the geometry and cross-section data, 

we generate 20,000 distinct core configurations. These 

are split into 18,000 training, 1,000 validation, and 

1,000 test datasets, ensuring comprehensive coverage of 

possible arrangements. Notably, no precomputed flux 

distributions or keff values are provided while training; 

instead, the model learns solely from the physics-

informed loss function derived from the two-group 
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neutron diffusion equation. Only the test set includes 

labeled data—namely, flux distributions and keff values 

for each configuration—calculated using an in-house 

FDM code for final model evaluation. 

The training process is implemented in PyTorch and 

executed on an NVIDIA RTX 3090 Ti. The Adam 

optimizer is utilized and the learning rate is scheduled 

via cosine annealing with the maximum temperature of 

50 and minimum learning rate of 10-6. Early stopping is 

enforced with a patience of 30 epochs to prevent 

overfitting, and a maximum of 500 epochs is allowed. 

Each configuration is discretized at a 1 cm mesh, 

leading to input tensors of size (N, 7, 170, 170) for 

batch size N. The boundary conditions are treated in 

accordance with the IAEA benchmark specifications. 

This setup ensures our dataset covers a broad range of 

plausible core states while relying solely on physics-

based constraints for model training. 

 

4. Numerical Results 

 

The overall training concludes in about 3 hours on an 

NVIDIA RTX 3090 Ti. Once trained, the model 

requires under 0.002 seconds to infer flux distributions 

and keff for a single core configuration. All accuracy 

assessments focus on the fuel region, where flux 

precision is of primary operational interest.  

Table I. PINNs results for 1000 test data 

 Top 1%  

error 

Average 

error 

Bottom 1% 

error 

 Flux 

(%) 

keff  

(pcm) 

Flux 

(%) 

keff  

(pcm) 

Flux 

(%) 

keff  

(pcm) 

Total 1.67 2.7 3.65 333.7 7.12 1184.9 

Fast 1.47  3.43  7.28  

Thermal 1.88  3.88  7.20  

 

Table I summarizes the model’s performance over 

1,000 unseen test configurations, each discretized at a 

1cm mesh. The CNN-based PINNs model achieves an 

average RMS flux error of 3.65% and a corresponding 

keff error of 333.7 pcm for the test set. Table I provides a 

more granular view of the results, where the top-

performing 1% of test cases shows a flux error of 1.67% 

and keff error of 2.7 pcm, while the bottom-performing 

1% exhibits flux and keff errors of 7.12% and 

1184.9 pcm, respectively. Fast and thermal flux errors 

display similar trends in the average, with RMS errors 

of 3.43% for fast group and 3.88% for thermal group, 

underscoring the model’s fairly balanced performance 

across energy groups. 

 

Fig 1. Comparison of predicted and reference flux 

distribution for a representative case 

Figure 1 illustrates a representative test configuration 

whose RMS error is close to the overall average, thus 

reflecting the proposed model’s typical performance. 

Each row corresponds to either the fast (top) or thermal 

(bottom) flux group, and the three columns show the 

reference solution (left), the predicted solution (middle), 

and the RMS error in percentage (right). In the inner 

fuel region, more than 90 % of flux errors remain below 

5% for both fast and thermal group, indicating that a 

CNN-based cross-section input approach effectively 

captures the essential diffusion behavior across multiple 

configurations.  

 

Fig 2. Scatter plot comparing predicted and reference 

values for all test cases. 

Figure 2 depicts the model’s distributions of a keff 

comparison. The predicted keff values are compared to 

the reference solutions, with red dashed lines indicating 

the ±500 pcm deviation. About 79.6% of the predictions 

stay within these bounds—suggesting that although the 

baseline model can capture the overall trend of keff, its 

performance remains more constrained than for flux 

predictions.  

Overall, the proposed CNN-based PINNs framework 

yields reasonable predictions of flux distributions and 
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keff across a wide range of PWR core configurations. 

While flux predictions generally achieve higher 

accuracy, the model also provides a reasonable 

foundation for keff.  

 

5. Conclusion 

This study presents a CNN-based Physics-Informed 

Neural Networks (PINNs) framework for solving the 2D 

two-group neutron diffusion equation in Pressurized 

Water Reactor (PWR) cores under multiple distinct 

loading patterns. By relying solely on node-wise cross-

section data and the governing physics—rather than 

labeled flux or keff values—the proposed model can 

infer solutions for unseen configurations (provided they 

share the same cross-section set) without retraining. 

Across 1,000 test cases, the model achieves an overall 

average root-mean-square (RMS) flux error near 3.65%, 

with top-performing 1% of cases showing flux errors 

around 1.67% and the bottom 1% reaching up to 7.12%. 

Similarly, the best 1% of keff predictions have errors of 

about 2.7 pcm, while the worst 1% climb as high as 

1184.9 pcm, yielding an average of roughly 333.7 pcm. 

Fast and thermal flux predictions exhibit parallel 

performance trends, with respective RMS errors of 

3.43% and 3.88%. Once trained, the model requires 

under 0.002 seconds on a single GPU to predict both 

flux distributions and keff, showing promise for near 

real-time or repeated calculations. 

Despite these promising results, two major limitations 

remain. First, training PINNs without labeled data can 

introduce convergence challenges and often demands 

careful hyperparameter tuning. Second, although the 

model generally captures the correct physical trends, its 

accuracy is not yet sufficient for practical deployment, 

particularly given there is no inherent guarantee that the 

solution corresponds to the fundamental eigenmode 

rather than a higher-order mode. Further refinements are 

thus necessary to ensure consistent identification of the 

fundamental mode and to meet the accuracy 

requirements demanded by real reactor physics analyses. 

Looking ahead, future efforts will focus on refining the 

network architecture, exploring more advanced PINNs 

strategies, and extending the approach to three-

dimensional reactor models. These developments aim to 

further improve predictive accuracy, reduce the risk of 

converging to non-fundamental modes, and strengthen 

the method’s overall applicability for practical reactor 

physics problems. 
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