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1. Introduction 

 
Recent advancements in reasoning-focused large 

language models (LLMs) have demonstrated remarkable 
improvements in structured reasoning and complex 
problem-solving capabilities. Specifically, models like 
DeepSeek R1 [1] have advanced significantly compared 
to earlier versions like DeepSeek V3[2]. The newer R1 
version can handle challenging logical and mathematical 
tasks more effectively. This improvement underscores 
the importance of reasoning capabilities beyond general 
language skills, especially for specialized tasks. 

For AtomicGPT [3], a specialized LLM for nuclear 
applications, requires advanced reasoning skills to 
handle complex nuclear tasks effectively. Improved 
reasoning allows AtomicGPT to make better-informed 
decisions and predictions, which are vital in sensitive and 
critical nuclear operations. 

We enhance the reasoning capabilities of AtomicGPT 
through knowledge distillation, transferring structured 
reasoning patterns from a larger teacher model. This 
allows AtomicGPT to perform complex tasks more 
effectively despite limited model size. 

 Our method leverages a rigorously filtered reasoning 
dataset, termed s1K-1.1 [4], which is primarily derived 
from the reasoning traces of advanced models. In 
particular, we focus on using reasoning traces generated 
by the DeepSeek R1 model (supplemented by Google’s 
Gemini model [5] where necessary) as the “teacher” data 
for distillation. By transferring the advanced reasoning 
patterns of these powerful teacher models into 
AtomicGPT, we seek to imbue the smaller 9B-parameter 
AtomicGPT with improved structured reasoning skills. 
AtomicGPT is a specialized LLM for applications in the 
nuclear domain, and strengthening its reasoning ability is 
expected to benefit AI-driven analysis and decision 
support in nuclear research. The following sections detail 
our dataset curation and distillation methodology, 
experimental results, and conclusions drawn from this 
work. 

 
 

2. Methods 
 
2.1 Knowledge Distillation Framework 
 

Knowledge distillation is a technique where a smaller 
model (student model) learns structured reasoning skills 
from a larger, more advanced model (teacher model). 
Traditional knowledge distillation methods, as 
introduced by Hinton et al. (2015), typically rely on soft-
label training, where the student model learns from the 
probability distributions of the teacher model by using 
KL divergence loss to match those distributions [6]. 

However, in our study the teacher model (DeepSeek 
R1) was not directly loaded, so soft labels (logits-based 
probability distributions) were not available when using 
the s1K-1.1 dataset for distillation. Instead, we employ a 
hard-label distillation approach, where the teacher 
models’ responses serve as direct supervision for the 
student model. To optimize this process, we used cross-
entropy loss (in place of KL divergence), which 
measures the difference between the predicted 
probability distribution and the actual label. 
 
 
2.2 Applied Hard-Label Knowledge Distillation Process 
 

Figure 1 illustrates our hard-label distillation 
workflow, which consists of three core stages: generating 
reasoning traces from teacher models, constructing a 
hard-labeled dataset, and training the student model with 
distillation. In this unified training step, the student 
model is optimized using hard-label supervision, and 
Low-Rank Adaptation (LoRA) is applied to improve 
memory and compute efficiency. 

For example, a reasoning trace such as "If x > y and y 
> z, then x > z." is used as the target output for training. 
These teacher-generated outputs are treated as final 
labels during distillation. 

This approach allows the student model to learn 
structured reasoning patterns directly from expert 
outputs without relying on access to the teacher’s soft 
probability distributions. The use of cross-entropy loss, 
instead of KL divergence, enables effective training 
under hard-label supervision. 

 

 
 
Fig. 1. Applied Hard-Label Distillation Workflow 
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- Reasoning Trace Generation: A teacher model 

(DeepSeek R1) is prompted to generate reasoning 
traces in response to mathematical problem-solving 
questions. 

 
- Hard-Labeled Dataset Construction: The 

teacher’s final outputs are curated into a training 
dataset by treating each response as a hard label. No 
soft probability distributions are preserved. 

 
- Distillation Fine-Tuning: The student model is 

fine-tuned using the hard-labeled dataset with cross-
entropy loss. This enables it to imitate the teacher’s 
structured reasoning patterns. 

 
- LoRA Optimization: Low-Rank Adaptation 

(LoRA [7]) is applied during fine-tuning to reduce 
memory usage and improve training efficiency 
while maintaining reasoning quality. 

 
Unlike traditional distillation approaches that rely on 

soft labels or logits, our method enables structured 
reasoning transfer solely from finalized textual outputs. 
This hard-label distillation framework is particularly 
suitable when teacher logits are inaccessible. 

 
 
2.3 Fine-Tuning Procedure 

 
We applied a fine-tuning strategy using LoRA (Low-

Rank Adaptation) to enhance model adaptability while 
minimizing memory and computational costs. Our fine-
tuning process involved the following key steps: 

 
 

2.3.1 Training Environment 
 

The fine-tuning process was conducted using a hybrid 
GPU setup consisting of two NVIDIA A100 GPUs with 
40GB of VRAM and six TITAN RTX GPUs with 24GB 
of VRAM each. The training was executed using 
PyTorch and Hugging Face Transformers. 
 

 
2.3.2 Data Processing & Preparation 

 
Structured reasoning traces were converted into a 

model input format aligned with our fine-tuning 
framework. We applied a data collator during 
preprocessing to maintain padding consistency and 
enable efficient batch processing. The dataset was then 
split into training and validation subsets to allow 
systematic evaluation of performance throughout fine-
tuning. DeepSeek R1 served as the primary teacher 
model. However, if a problem instance was marked 'No' 
(indicating DeepSeek R1 did not produce a solution), we 
used the Gemini model’s response instead. For instance, 
a reasoning trace like “If the derivative of a function is 

positive, then the function is increasing” is tokenized and 
used as the correct output for model training. 

As part of the preprocessing pipeline, we transformed 
the s1K-1.1 dataset to match the input format expected 
by the Gemma2-based AtomicGPT model. Specifically, 
the `deepseek_thinking_trajectory` and 
`deepseek_attempt` fields were tokenized using special 
instruction-style tokens, `<start_of_turn>think` and 
`<start_of_turn>answer`, respectively. These were then 
concatenated into a single text field, forming a structured 
input sequence that mimics multi-turn reasoning 
dialogues. This approach allowed the model to learn the 
progression from thought formulation to final answer 
within a single context, improving alignment with its 
tokenization schema and enhancing reasoning coherence. 

 
An example of such a training instance is as follows: 
 

 
 
Fig. 2. Example of Preprocessed Multi-Turn Input for 
AtomicGPT Fine-Tuning 
 
 
2.3.3 Fine-Tuning Configuration 
 
- LoRA settings: 

§ Rank (r) = 16 
§ LoRA alpha = 32 
§ Dropout rate = 0.1 

 
- Optimization settings: 

§ Optimizer: Paged AdamW 
§ Learning rate: 2e-5 with a cosine decay 

scheduler 
§ Warmup ratio: 0.03 for training stability 
§ Maximum sequence length: 8192 tokens 

(Based on a maximum context window of 
32,768 tokens to prevent truncation of long 
reasoning sequences. [8]) 
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§ Batch size: 2, with gradient accumulation 
steps set to 8 

 
 
2.3.4 Training 
 

The model was fine-tuned for 5 epochs—a setting 
determined through multiple tests to be optimal. This 
duration ensured that the student model effectively 
captured the structured reasoning patterns from the 
teacher’s responses. 

We used cross-entropy loss as the primary objective to 
align the student model’s output with the teacher model’s 
output, thereby reinforcing structured reasoning. To 
enhance computational efficiency while maintaining 
accuracy, we conducted fine-tuning in FP16 (half-
precision) mode. Mixed precision techniques were 
leveraged to reduce memory consumption and accelerate 
computation. The entire fine-tuning process took 
approximately one hour to complete. 

 
 

3. Experimental Evaluation and Results 
 

3.1 Distilled Model Evaluation 
 
We evaluated the distilled AtomicGPT model on two 

challenging reasoning benchmarks: MATH-500 (a set of 
500 multi-step mathematics problems [9]) and GPQA 
Diamond (a graduate-level scientific Q&A benchmark 
[10] designed to resist simple lookups and therefore 
require reasoning). The results are summarized in Table 
1, comparing the original AtomicGPT-gemma2-9B with 
our distilled AtomicGPT-Distill-gemma2-9B on these 
benchmarks. We report performance using the pass@1, 
pass@5, and self-consistency metrics. Pass@1 and 
pass@5 denote the percentage of problems the model 
solves correctly with its top answer and within its top five 
answers, respectively. The self-consistency score reflects 
the model’s internal consistency in reasoning, with 
higher values indicating more reliable reasoning paths. 
 

Benchmark Model pass@1 pass@5 

MATH-500 
AtomicGPT-gemma2-9B 24.0 37.4 

AtomicGPT-Distill-
gemma2-9B 23.4 58.2 

GPQA 
Diamond 

AtomicGPT-gemma2-9B 22.2 66.7 

AtomicGPT-Distill-
gemma2-9B 29.8 68.1 

 
Table 1: Performance of Base vs. Distilled AtomicGPT on 

Reasoning Benchmarks. 
 

Overall, the distilled AtomicGPT model demonstrated 
notable improvements on these reasoning tasks. On the 
MATH-500 benchmark, the distilled model’s pass@5 

score jumped to 58.2% (from 37.4% in the base 
model). 

A similar trend was observed on the GPQA Diamond 
benchmark: the distilled model’s pass@1 score jumped 
to 29.8% (versus 22.2% for the base model), 
representing a major improvement in single-answer 
accuracy. It also attained a higher pass@5 score (68.1% 
vs. 66.7%), further indicating that it follows more stable 
and structured reasoning paths. These results highlight 
the effectiveness of our knowledge distillation and 
dataset refinement approach in enhancing AtomicGPT’s 
complex problem-solving capabilities compared to the 
original model. In particular, the distilled model exhibits 
greater robustness and deeper reasoning, underscoring 
the practicality of this distillation strategy. 

While this approach effectively transfers reasoning 
patterns, it has some limitations. Without soft labels, the 
student model lacks insight into the teacher model’s 
confidence in its answers, which may affect nuanced 
decision-making. In addition, emphasizing structured 
multi-step reasoning during training may lead the model 
to favor deeper problem-solving over direct answer 
retrieval, slightly reducing its performance on 
straightforward questions. The heavy filtering of simpler 
problems in our dataset limited the model’s exposure to 
direct-answer scenarios, which likely impacted its 
pass@1 accuracy. Nonetheless, the notable 
improvements in MATH-500 pass@5 and GPQA 
Diamond pass@1 demonstrate that the model has 
become more reliable at handling complex multi-step 
reasoning tasks. 

 
 

3.2 Ongoing and Future Work 
 

While the distilled AtomicGPT has shown improved 
reasoning capabilities, we are exploring further 
refinements. One direction involves evaluating 
alternative teacher models beyond DeepSeek R1 to 
provide more diverse and generalized reasoning 
examples. 

We also recognize that not employing test-time 
scaling [8] may have limited our performance gains. 
Test-time scaling is a training-time calibration technique 
introduced in the s1 paper for the s1K-1.1 dataset. This 
method optimizes model performance during inference 
without increasing the training data volume and has 
demonstrated significant improvements in low-data 
regimes. We plan to experiment with test-time scaling to 
assess its potential impact, particularly under limited-
data conditions. 

Another limitation of our current framework is the 
absence of soft labels, which prevents the student model 
from leveraging the confidence levels encoded in the 
teacher model's predictions. This lack of nuance may 
hinder the diversity and adaptability of reasoning 
strategies acquired during distillation. To address this, 
we aim to integrate soft labels into our training pipeline 
by expanding our data extraction process, enabling a 
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more effective balance between knowledge fidelity and 
model generalization. 

 
 

4. Conclusions 
 

This study proposed a knowledge distillation strategy 
to enhance the multi-step reasoning capabilities of 
AtomicGPT-gemma2-9B, a domain-specific large 
language model. By leveraging a high-quality reasoning 
dataset generated from advanced teacher models, we 
fine-tuned the student model using hard-label distillation 
techniques. As a result, the distilled model demonstrated 
notable performance improvements—achieving a 
significant increase in pass@5 accuracy on the MATH-
500 benchmark and a higher pass@1 score on the GPQA 
Diamond benchmark. These results validate the 
effectiveness of our distillation approach in transferring 
structured reasoning patterns. 

Improving the reasoning capacity of AtomicGPT has 
significant implications for nuclear engineering and 
safety-critical domains, where complex decision-making 
requires robust, interpretable AI assistance. Enhanced 
reasoning performance enables more accurate safety 
assessments, anomaly detection, and operational 
diagnostics, thus promoting greater trust in AI-driven 
systems. This advancement supports the broader 
adoption of foundation models in high-stakes 
applications where reliability and domain-specific 
expertise are paramount. 

Future work will explore diverse teacher models, 
semi-supervised learning with soft labels, and 
optimization of inference-time performance. 
Additionally, we aim to scale the distilled model to larger 
architectures and apply it to more intricate reasoning 
tasks, including symbolic computation and mathematical 
theorem proving. As the model continues to be refined, 
AtomicGPT is expected to evolve into a powerful and 
trustworthy tool for advanced reasoning in both nuclear 
and general scientific applications. 
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