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1. Introduction 

 
The Monte Carlo (MC) method is highly accurate for 

reactor analysis but requires high computational costs. 
To address this, various acceleration techniques have 
been developed to improve efficiency while maintaining 
accuracy. The Improved Deterministic Truncation of 
Monte Carlo (iDTMC) method integrates stochastic and 
deterministic techniques to accelerate the convergence of 
the fission source distribution (FSD) and truncates the 
solution. These techniques allow accurate subspace 
solutions with very few active cycles, significantly 
improving efficiency and reducing the computational 
cost. However, deterministic acceleration strengthens 
cycle-wise correlations, causing conventional variance 
estimators to underestimate uncertainty. To resolve this 
issue, this study applies the History-Based Batch method 
into the iDTMC framework. 

 
2. Methods and Results 

 
2.1 The iDTMC Method 

 
The iDTMC method enhances the efficiency of MC 

simulations by integrating deterministic acceleration and 
truncation techniques [1]. It employs the p-CMFD 
method to accelerate the convergence of the FSD during 
inactive cycles and the p-FMFD method to generate pin-
level reactor solutions during active cycles. The key 
distinction between p-CMFD and p-FMFD is that p-
CMFD treats subassemblies as nodes, while p-FMFD 
treats individual pins within the subassemblies as nodes. 
The p-CMFD method solves the one-group neutron 
balance equation, Equation (1). 

 

�
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Here, 𝐴𝐴𝑠𝑠 is the surface area, 𝑉𝑉𝑖𝑖 is the volume of node 𝑖𝑖, 𝑠𝑠 
is the surface index, 𝜙𝜙  and 𝐽𝐽  are the flux and current, 
respectively, Σ  is the cross-section, and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  is the 
effective multiplication factor. The methodology 
consists of two stages. First, p-CMFD is applied during 
inactive cycles to accelerate FSD convergence. Once 
convergence is achieved, p-FMFD truncates the MC 

solution with accumulated parameters after skip cycles, 
operating independently to ensure numerical stability. 

While iDTMC significantly improves computational 
efficiency, it also introduces stronger cycle-wise 
correlations due to the acceleration. As a result, variance 
estimation methods, which assume cycle-wise 
independence, tend to underestimate the real variance. 

 

 
Figure 1. Schematic of the iDTMC method 

 
2.2 History-Based Batch Method 
 

Cycle-wise correlation in MC simulations arises from 
two primary sources: genealogical dependency and the 
normalization scheme for fission source neutron weights. 
To obtain independent estimates within a single MC run, 
Shim, Choi, and Kim developed the History-Based Batch 
Method [2]. This method partitions an MC simulation 
with 𝑁𝑁 active cycles and 𝑀𝑀 histories per cycle into 𝑁𝑁𝐵𝐵 
independent MC simulations, each with 𝑁𝑁 active cycles 
and 𝑀𝑀/𝑁𝑁𝐵𝐵  histories per cycle. It achieves this by 
grouping 𝑀𝑀  histories into 𝑁𝑁𝐵𝐵  ancestor fission source 
neutrons groups at the start of the first active cycle and 
tracking each history through all 𝑁𝑁  cycles. Here, 𝑁𝑁𝐵𝐵 
represents the number of History-Based Batches. 

 

 
Figure 2. Schematic of the History-Based Batches 
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In standard MC simulations, the fission source weight 
is normalized at the 𝑖𝑖th cycle using Equation (2). 

 

𝑤𝑤𝑖𝑖 =
𝑀𝑀
𝑀𝑀𝑖𝑖

(2) 

 
Here, 𝑀𝑀𝑖𝑖 denotes the number of fission source neutrons 
generated in the 𝑖𝑖 − 1’th cycle. However, in the History-
Based Batch Method, each batch is normalized 
separately to mitigate cycle-wise correlation caused by 
the normalization scheme. The weight normalization for 
the 𝑘𝑘th History-Based Batch is given by Equation (3). 
 

𝑤𝑤𝑖𝑖𝑘𝑘 =
𝑀𝑀 𝑁𝑁𝐵𝐵⁄
𝑀𝑀𝑖𝑖

𝑘𝑘 (3) 

 
Here, 𝑀𝑀𝑖𝑖

𝑘𝑘  represents the number of fission source 
neutrons in the𝑘𝑘th History-Based Batch at 𝑖𝑖th cycle.  

Using the History-Based Batch Method, the batch-
average MC tally, 𝑄𝑄𝑘𝑘, is computed as Equation (4). 

 

𝑄𝑄𝑘𝑘 =
1

𝑁𝑁(𝑀𝑀 𝑁𝑁𝐵𝐵⁄ )��𝑓𝑓𝑖𝑖𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑘𝑘

𝑁𝑁

𝑖𝑖=1

(4) 

 
Here, 𝑄𝑄𝑖𝑖𝑖𝑖  is the MC tally estimate of 𝑄𝑄 for 𝑗𝑗th history in 
𝑖𝑖 th cycle, and 𝑓𝑓𝑖𝑖𝑘𝑘  is the weight correction for the 𝑘𝑘 th 
History-Based Batch at 𝑖𝑖th cycle, defined as Equation (5). 
 

𝑓𝑓𝑖𝑖𝑘𝑘 =
𝑤𝑤𝑖𝑖𝑘𝑘

𝑤𝑤𝑖𝑖
(5) 

 
Since the normalization process is applied separately to 
each History-Based Batch, the weights of different 
batches may vary—some becoming smaller and others 
larger. To compensate for this effect when tallying, we 
introduce the weight correction factor. From 𝑄𝑄𝑘𝑘 , the 
sample mean 𝑄𝑄�𝐻𝐻𝐻𝐻  and its variance 𝜎𝜎2[𝑄𝑄�𝐻𝐻𝐻𝐻]  are 
estimated as Equation (6) and (7). 
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1
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(6) 

𝜎𝜎2[𝑄𝑄�𝐻𝐻𝐻𝐻] =
1

𝑁𝑁𝐵𝐵(𝑁𝑁𝐵𝐵 − 1)�
(𝑄𝑄𝑘𝑘 − 𝑄𝑄�𝐻𝐻𝐻𝐻)2

𝑁𝑁𝐵𝐵

𝑘𝑘=1

(7) 

 
This batch-based grouping and normalization process 
effectively reduces cycle-wise correlation in MC tally 
calculations. 
 
2.3 iDTMC with History-base Batch Sampling  

 
The iDTMC method exhibits strong cycle-wise 

correlations, making accurate variance estimation 
challenging. To address this issue, various techniques, 
such as the Correlated Sampling Method [3] and the 
Autoregressive (1) Model [4], have been employed. 

These methods generate p-FMFD parameters from a 
probability density function obtained through correlated 
sampling or the autoregressive model. The sampled 
parameters include one-group total, absorption, and nu-
fission cross-sections, as well as flux and interface 
current. Using these sampled parameters, multiple p-
FMFD problems are formulated. Each perturbed p-
FMFD problem is then solved either directly or using 
first-order perturbation theory, and the resulting standard 
deviation is used to estimate the real variance. 

In this study, we adopt the History-Based Batch 
method for sampling p-FMFD parameters. Implementing 
this method in iDTMC involves some modifications. To 
maintain consistency with conventional MC simulations, 
we preserve the standard weight normalization process. 
However, to ensure the conservation of histories within 
each History-Based Batch, a weight correction factor is 
applied when banking fission source neutrons, as 
described by Equation (8). 

 

𝑛𝑛 = �𝑤𝑤𝑖𝑖 �
𝜈𝜈𝜎𝜎𝑓𝑓
𝜎𝜎𝑡𝑡
� �

1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

� 𝑓𝑓𝑖𝑖𝑘𝑘� (8) 

 
Here, 𝑛𝑛 represents the number of fission source neutrons. 

For the iDTMC calculation itself, we use non-
corrected tallied values. However, when accumulating p-
FMFD parameters, we store both non-corrected and 
corrected values. During the sampling process, since all 
the considered parameters follow a normal distribution, 
the non-corrected accumulated parameters' mean is used 
as the sample mean, while the corrected parameters' 
variance is used as the sample variance. 

Latin Hypercube Sampling (LHS) is employed to 
generate independent uniform random numbers (URNs), 
which are then transformed to follow a normal 
distribution. The generated values are adjusted based on 
the computed mean and variance, producing perturbed p-
FMFD problems. These problems can be solved either 
directly or using first-order perturbation theory. The 
variance obtained from solving these perturbed problems 
is then used to estimate the real variance. 

A schematic representation of the iDTMC method 
with History-Based Batch sampling is provided in Figure 
2. This new sampling method enables a more accurate 
estimation of the real variance by explicitly accounting 
for the variance of the sampled parameters. 

 

 
Figure 3. Schematic of the iDTMC method with 

History-Based Batch sampling 
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3. Numerical Results 
 

To estimate the real variance, we solve the small 
modular reactor (SMR) problem previously studied in 
[4]. The geometry of the problem is shown in Figure 4. 
A total of 1.5 × 10⁶ histories were simulated using 30 
inactive cycles and 10 active cycles. Additionally, 15 
cycles were skipped before accumulating p-FMFD 
parameters, and p-CMFD acceleration was applied in the 
inactive cycles after skipping the first cycle. All 
calculations were performed in parallel using 200 Intel® 
Xeon® Gold 6148 cores. 
 

 
Figure 4. Cross-sectional (left) and side (right) view of 

the SMR model 

To investigate the effect of different history-based 
batch sizes, we set the number of history-based batches 
to 30, 40, 50, and 60. The minimum batch size of 30 was 
chosen to ensure that the number of samples was 
sufficient for a normal distribution approximation. The 
maximum batch size of 60 was selected based on the 
mesh resolution of the p-FMFD problems. Since pins are 
used as fine meshes, the number of histories per batch is 
given by 𝑀𝑀/𝑁𝑁𝐵𝐵 . If too many batches are used, the 
number of histories per batch becomes too low, leading 
to reduced or even zero tallied neutron counts for each 
parameter in the fine meshes. 

The difference between the averaged eigenvalues from 
iDTMC with History-Based Batch sampling with 30 
independent batch calculations and the reference 
eigenvalue obtained from 45 independent batch 
calculations are summarized in Table 1. The reference 
eigenvalue is 1.1258 ± 15.29 pcm. 

 
Number of  

history-based batches 
Difference 

[pcm] 
30 7.44 
40 10.8 
50 10.3 
60 12.1 

Table 1. Calculated eigenvalue from iDTMC with 
History-Based Batch sampling and its difference 

The calculated eigenvalues remain within 1𝜎𝜎 of the real 
variance, indicating that the method produces reasonable 
results. This confirms that iDTMC with History-Based 
Batch sampling does not introduce significant difference 
in the eigenvalue calculation. 

The averaged estimated variance of eigenvalue at 10th 
active cycle obtained using History-Based Batch 
sampling with 30 independent batch calculations is 
presented in Table 2 and Figure 5. The variance was 
estimated using first-order perturbation theory. HB at 
Figure 5 represent the number of history-based batches 

 
Number of 

history-based 
batches 

Estimated 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  
standard 

deviation [pcm] 

Relative error 
[%] 

30 12.62±0.62 17.5 
40 12.57±0.78 17.8 
50 12.63±1.1 17.4 
60 12.57±0.97 17.8 

Table 2. Estimated 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 variance and its relative error 
from iDTMC with History-Based Batch sampling 

 
Figure 5. Estimated 𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆 variance at each active cycle 

using History-Based Batch sampling 

Table 2 reports the variance estimated at the 10th 
active cycle, while Figure 5 illustrates the variance 
estimation throughout all active cycles. The variance 
estimation at the 10th active cycle shows a 3 pcm 
difference regardless of batch sizes. Given that the 
apparent variance computed from a single batch exhibits 
a 2 pcm, applying History-Based Batch sampling 
significantly improves variance estimation accuracy. A 
similar trend is observed when solving all the perturbed 
p-FMFD problems directly. 

By solving all the perturbed p-FMFD problems, we 
can also estimate the variance of the power distribution. 
The overall standard deviation of the power distribution 
is evaluated using the average standard deviation, as 
defined in Equation (9). 

 

𝜎𝜎�𝑝𝑝 =
1

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
� 𝜎𝜎𝑖𝑖

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖=1

(9) 

 
Here, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  represents the number of fuel pin, 𝑖𝑖  is the 
fuel pin index, and 𝜎𝜎𝑖𝑖 is the relative standard deviation of 
the 𝑖𝑖 th fuel pin. The real variance of the power 
distribution, obtained from 45 independent batch 
calculations, is 3.913 pcm. Table 3 presents the estimated 
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variance of the power distribution and its relative error, 
while Figure 6 illustrates the estimated and real variance 
of the power distribution at the midplane. 

 
Number of 

history-based 
batches 

Estimated 𝜎𝜎�𝑝𝑝 
[pcm] 

Relative error 
[%] 

30 4.083 4.4 
40 4.087 4.5 
50 4.087 4.4 
60 4.098 4.7 

Table 3. Estimated 𝝈𝝈�𝒑𝒑 and its relative error from 
iDTMC with History-Based Batch sampling 

 
Figure 6. Estimated 𝝈𝝈�𝒑𝒑 and the real variance at the 

midplane 

As shown in Table 3, the estimated power distribution 
variance remains within 5% of the real variance, 
regardless of the number of history-based batches. 
Additionally, Figure 6 confirms that the estimated and 
real variance closely overlap, demonstrating the 
accuracy of the variance estimation method. When 
averaging the relative error of variance for each pin, the 
average error remained within 10% across all batch sizes, 
further validating the effectiveness of the History-Based 
Batch sampling approach in power variance estimation. 
 

3. Conclusions 
 

In this study, we applied the History-Based Batch 
Method to the iDTMC framework to improve variance 
estimation. The iDTMC method, while enhancing 
computational efficiency through deterministic 
acceleration and truncation, introduces strong cycle-wise 
correlations, leading to underestimation of the real 
variance when using conventional variance estimators. 
By incorporating History-Based Batch sampling, we 
mitigated these correlations and enabled more accurate 
variance estimation. 

The numerical results obtained from the SMR 
problem demonstrate that the eigenvalues calculated 
using iDTMC with History-Based Batch sampling 

remain within 2𝜎𝜎  of the real variance, confirming the 
reliability of the proposed approach. Moreover, variance 
estimation using first-order perturbation theory exhibited 
significant improvements over conventional methods, 
with only a slight underestimation observed across active 
cycles. For the power distribution variance, regardless of 
the number of history-based batches used, the estimated 
values were within a 5% error compared to the real 
variance. 

However, the proposed method also has some 
limitations. First, since iDTMC operates on a fine-mesh 
scale, a massive number of histories is required to tally 
p-FMFD parameters accurately. The use of History-
Based Batch sampling further reduces the number of 
histories per batch, necessitating an even greater total 
number of histories for precise variance estimation. 
Second, because both weight-corrected and uncorrected 
parameters must be tallied, the method demands 
significantly more memory compared to conventional 
approaches. These factors increase computational and 
memory requirements, potentially limiting the feasibility 
of the method for large-scale simulations. 

Despite these challenges, the History-Based Batch 
method proves to be particularly effective in highly 
cycle-wise correlated problems such as iDTMC, where 
conventional variance estimators fail to provide reliable 
uncertainty quantification. These findings demonstrate 
that History-Based Batch sampling enables improved 
and reliable variance estimation within the iDTMC 
framework while maintaining consistency in eigenvalue 
calculations. 

Future work will focus on analyzing the correlation 
between p-FMFD parameters, also at the node-wise level, 
to verify the independence assumption used in this study. 
This analysis will further justify the reliability of the 
proposed variance estimation method and may lead to 
improved modeling of parameter dependencies. 
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