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1. Introduction 

 
For decades, research has focused on optimizing the 

core fuel loading pattern (LP) to extend reactor cycle 
length while enhancing power stability and fuel 
efficiency. Early methods such as genetic algorithms 
evaluated numerous random LPs to find improved 
configurations [1], but this brute-force approach was 
inefficient. To overcome this, Simulated Annealing (SA) 
was introduced [2], significantly reducing the number of 
evaluations needed to find optimal LPs. 

To further enhance efficiency, a screening technique 
was applied to LP optimization [3], using 2D core 
deterministic calculations to filter out unfavorable or 
sufficiently optimal LPs early in the SA process. 
However, even 2D calculations introduced notable 
computational overhead. To address this, Convolutional 
Neural Networks (CNNs) were adopted [4], offering 
faster evaluations but only at the assembly-wise level, 
losing crucial pin-wise detail. 

To resolve this, a Vision Transformer (ViT)-based LP 
evaluation model [5] was developed to predict key 
reactor performance metrics using quarter-core fuel rod 
distributions, preserving pin-level accuracy while 
maintaining efficiency. Building on this, the present 
study proposes a multi-cycle training methodology for 
the ViT-based LP evaluation model, improving its 
generalization and predictive accuracy across diverse LP 
configurations. The fine-tuned model was then 
integrated into the SA screening process and applied to 
optimize LPs for the first and second cycles of Hanbit 
(Yonggwang) Unit 3 [6], a Korean OPR-1000 reactor. 
 

2. Pin-wise Vision Transformer model 
 
2.1. Model architecture 

 
The LP evaluation model consists of two types: the 

cycle length evaluation model and the peaking factor 
evaluation model. Each model takes a three-dimensional 
tensor as a 120x120x3 tensor as input, representing a 
quarter-core divided into 120x120 fuel rods. For each rod, 
the input features include the enrichment, the burnable 
poison (BP) mass fraction, and the burnup value of the 
quarter-assembly to which the rod belongs. The values 
for areas outside the core and water holes are set to zero. 

Figure 1 presents an example of the input data 
visualized as an image. In the image, red represents 

enrichment, green indicates the BP mass fraction, and 
blue corresponds to the burnup value of the quarter-
assembly. Each rod feature is normalized so that the 
maximum value is scaled to 256, allowing for effective 
visualization of the input data. 
 

 
Fig. 1. Visualization of a tensor input for loading pattern 

evaluation models [5]. 
 
The proposed model structure follows a similar design 

to that presented in a previous study [5], utilizing the ViT 
framework to effectively analyze two-dimensional 
quarter-core data. Figure 2 illustrates the overall 
structure of the LP evaluation model, depicting its key 
components and processing flow, while Table 1 outlines 
the essential hyperparameters that define each model 
configuration. 

To adapt the Transformer architecture to the input data, 
the 120×120×3 tensor is divided into size 𝑃×𝑃×3 patches 
(where 𝑃  denotes the patch size), each of which is 
transformed into a 1D tensor and projected onto a hidden 
dimension 𝐷  using a dense matrix. The number of 
patches, 𝑁, is given by (120/𝑃)ଶ. The resulting 𝑁 × 𝐷 
input tensor is augmented with trainable 𝑁 × 𝐷 
positional embeddings, and an additional 𝐷-dimensional 
learnable token is appended for predicting cycle length 
or peaking factor, resulting in a final (𝑁 + 1) × 𝐷 tensor. 
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The Transformer model consists of L stacked layers, 
each containing a Multi-Head Attention (MHA) and a 
Feed Forward Neural Network (FFNN). MHA assigns 
importance weights to tokens using H parallel attention 
heads, which extract diverse dependencies from the input 
sequence. The outputs from these heads are concatenated, 
transformed, and multiplied with token representations 
to emphasize critical information. FFNN refines 
extracted features through two fully connected layers, 
expanding the feature dimension to 𝐷ிிேே  before 
projecting it back to 𝐷. The Gaussian Error Linear Unit 
(GELU) activation function is used to enhance 
nonlinearity and adaptability. Residual connections are 
applied in both MHA and FFNN to stabilize training and 
facilitate deep learning. 

After processing through the Transformer layers, the 
appended prediction token encodes the necessary 
information for evaluation. This token is passed through 
a Multi-Layer Perceptron (MLP) consisting of an input 
layer, two hidden layers (dimension 𝐷ெ ), and an 
output layer, with GELU activation applied in the hidden 
layers. The final output layer generates the predicted 
cycle length or peaking factor, providing an accurate 
estimation of core performance parameters. 
 

 
Fig. 2. Pin-wise Vision Transformer model structure. 

 
Table I: Hyperparameters of the pin-wise Vision 

Transformer models. 
Type Cycle length Peaking factor 

Hidden dimension 256 256 
Patch size 8 2 

No. of layers 3 5 
No. of attention heads 4 4 

Dimension of FFNN layer 512 512 
Dimension of MLP layer 64/32 64/32 

 
2.2. Model training method 
 
2.2.1. Random LP dataset 

 
To enable the model to analyze multi-cycle LPs, it is 

essential to train the model with a diverse set of LPs 
within the required scope. To achieve this, we generated 
LPs based on Hanbit Unit 3 Cycle 1 and Cycle 2 from 
NDRs, while Cycles 3 to 16 were derived from an 
equilibrium LP design paper [6, 7]. Table 2 presents the 
fuel assembly types used in random LP generation. In the 
table, assembly types from A0 to D2 represent fresh fuel 
assemblies for Cycle 1, E0 to E2 for Cycle 2, FC to F6 
for Cycles 3 to 10, and GC to GH6 for Cycles 11 to 16. 
Figure 3 represents types of enrichment zoning pattern 
and burnable poison arrangement for each assembly. 
 

Table II: Fuel assemblies for loading pattern from Hanbit 
unit 3 [6, 7]. 

FA 
Type 

Fuel 
Enrichment 

[wt.% U-235] 
No. Rods Burnable Poison 

Fraction 
[wt.% Gd2O3] 

Normal Zoned Zoned BP 

A0 1.30 - - - - 

B0 2.37 - - - - 

B1 2.36 1.30 52 8 4.0 

B2 2.37 - 52 4 4.0 

C0 2.87 2.35 - - - 

C1 2.87 2.36 52 8 4.0 

D0 3.35 2.87 - - - 

D1 3.36 2.85 52 8 4.0 

D2 3.35 2.87 100 8 4.0 

E0 4.08 3.61 - - - 

E1 4.08 3.61 52 8 6.0 

E2 3.60 3.11 52 8 6.0 

FC 2.20 - - - - 

F0 4.65 4.10 - - - 

F1 4.65 4.10 52 4 6.0 

F2 4.65 4.10 52 8 6.0 

F3 4.65 4.10 52 12 6.0 

F4 4.65 4.10 52 16 8.0 

F5 4.65 4.10 52 20 8.0 

F6 4.65 4.10 52 24 8.0 

GC 2.90 - - - - 

G5 4.75 4.45 52 20 8.0 

GH1 4.95 4.45 52 4 8.0 

GH2 4.95 4.45 52 8 8.0 

GH3 4.95 4.45 52 12 8.0 

GH4 4.95 4.45 52 16 8.0 

GH5 4.95 4.45 52 20 8.0 

GH6 4.95 4.45 52 24 8.0 
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Fig. 3. Enrichment zoning pattern and burnable poison 

arrangement [6]. 
 

For Cycle 1, 5,000 LPs were generated by randomly 
swapping or replacing fuel assemblies within the NDR 
LP or designated regions (A0 to D2) used in Cycle 1. 
Each LP maintained octant symmetry, and as all 
assemblies were fresh fuel, burnup was set to 0. 

For Cycle 2, LPs were generated similarly, but burnup 
values were assigned to fuel assemblies by dividing them 
into 2×2 regions, with burnup randomly set within 5–30 
MWD/kgU range, with an additional variation of ±5 
MWD/kgU. Fresh fuel assemblies retained 0 burnup. 
25,000 LPs were generated for Cycle 2. 

For Cycles 3 to 10, LPs were derived from 18-month 
equilibrium cores, using FC to F6 as fresh fuel. Fuel from 
previous cycles retained 5–30 MWD/kgU (±5 
MWD/kgU), while two-cycle-old fuel had 10–60 
MWD/kgU (±10 MWD/kgU). 25,000 LPs were 
generated per cycle for Cycles 3 and 4, while 10,000 LPs 
were generated per cycle for Cycles 5 to 10 due to similar 
assembly types. 

For Cycles 11 to 16, single-zone LPs with 93 fresh fuel 
assemblies from 24-month equilibrium cores were used 
as references. The same approach as Cycles 3–10 was 
followed, but cycle lengths were longer, so burnup 
values were adjusted: fuel from the previous cycle had 
5–40 MWD/kgU (±5 MWD/kgU), and two-cycle-old 
fuel had 10–70 MWD/kgU (±10 MWD/kgU). Other 
aspects of LP generation remained consistent with 
Cycles 3–10. 

A total of 230,000 generated LPs were evaluated using 
STREAM/RAST-K (ST/RK), a two-step deterministic 
code developed by UNIST [8], to determine the cycle 
length and the peaking factor for each LP. If the peaking 
factor of any LP exceeded 5.0, the LP was regenerated to 
ensure that the peaking factor remained at or below this 
threshold. 
 
2.2.2. Near-optimal LP dataset 
 

Random LP generation methods rarely produce near-
optimal LPs, making it difficult for the LP evaluation 
model to accurately predict LPs in the optimal region. To 
address this issue, we utilize the pre-trained model to 
perform Simulated Annealing (SA) and collect optimal 
LP data for improved model accuracy. SA is performed 
2,000 times for each cycle from Cycle 1 to Cycle 16. The 
initial LPs are selected from NDR LPs and those 
presented in the equilibrium core study. The burnup 
values of burnt fuel assemblies are obtained from 
previous cycle calculations. 
 
2.2.3. Method for model training 
 

The dataset is divided into three subsets. The first is 
the training dataset, which is used to optimize the model's 
parameters by making predictions based on LPs and 
minimizing errors through comparison with labeled data. 
The second is the validation dataset, which is separate 
from the training dataset and is used to assess the model's 
error after each epoch. This dataset is not involved in 
training but serves to evaluate how well the model 
generalizes to unseen data. Finally, the test dataset is 
separate from both the training and validation datasets 
and is used to assess the model's final prediction 
accuracy after training is complete. The training, 
validation, and test datasets were split into an 8:1:1 ratio. 
Figures 4 and 5 illustrate the distribution of cycle lengths 
and peaking factors for each subset of the randomly 
generated LPs. 

Figure 6 presents the distributions of cycle length in 
the training, validation, and test datasets derived from the 
near-optimal LP dataset. The distribution patterns are 
consistent across all three datasets, ensuring that the 
model is trained and evaluated on a representative dataset. 
Multiple peaks indicating the presence of distinct LP 
categories. This diverse distribution enables the model to 
generalize effectively across different LP configurations. 

Figure 7 shows the distributions of peaking factor for 
training, validation, and test datasets. The distributions 
exhibit a sharp peak around 1.5 to 1.6, reflecting the 
dominance of near-optimal LPs with peaking factors in 
this range. The validation and test datasets follow a 
similar distribution to the training dataset, ensuring 
consistency in model evaluation. Compared to the cycle 
length distribution, the peaking factor distribution 
appears more concentrated, suggesting that most LPs 
exhibit peaking factors within a narrow range. 

The model training process follows these steps: In 
each training step, a batch of 32 samples from the 
training dataset is processed to compute the model’s 
output. This output is then compared with the ST/RK 
results to calculate the Root Mean Square (RMS) error. 
Based on this error, the backpropagation algorithm is 
applied to optimize the model’s parameters. This process 
is repeated until the model has been trained on the entire 
training dataset, marking the completion of one epoch. 
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Fig. 4. Distributions of cycle length for the training, 

validation, and test datasets from the random loading pattern 
dataset. 

 

 
Fig. 5. Distributions of peaking factor for the training, 

validation, and test datasets from the random loading pattern 
dataset. 
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Fig. 6. Distributions of cycle length for the training, 

validation, and test datasets from the near-optimal loading 
pattern dataset. 

 

 
Fig. 7. Distributions of peaking factor for the training, 

validation, and test datasets from the near-optimal loading 
pattern dataset. 
 
2.3. Model performance 
 
2.3.1. Model trained with random LP dataset 
 

Figure 8 compares the core performance parameters 
predicted by the trained model with the corresponding 
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ST/RK-calculated values using the random LP dataset. 
The left graph presents the calculated vs. predicted cycle 
length, while the right graph shows the calculated vs. 
predicted peaking factor. The red line represents the ideal 
case where the predicted values perfectly match the 
ST/RK-calculated values. The black lines indicate the ±2% 
relative error boundary. In both graphs, the data points 
are closely aligned with the diagonal reference line, 
indicating a strong correlation between the model's 
predictions and the ST/RK results. However, the peaking 
factor predictions show slightly greater deviation from 
the reference line than the cycle length predictions, 
suggesting a relatively higher prediction error for the 
peaking factor. This is likely due to the higher sensitivity 
of peaking factor to localized pin-wise heterogeneity, 
which poses a greater challenge for the model to capture 
precisely. 
 

 
Fig. 8. Comparison of the core performance parameters 

between calculated value from ST/RK and predicted value by 
models trained with random loading pattern dataset. 
 
Table 3 quantifies the relative error between the ST/RK 
calculations and model predictions for cycle length and 
peaking factor. The RMS error is 0.12% for cycle length 
and 0.82% for the peaking factor, confirming that the 
model achieves high prediction accuracy. The maximum 
absolute error is 0.85% for cycle length and 19.8% for 
the peaking factor, further highlighting the increased 
difficulty in accurately predicting the peaking factor 
compared to the cycle length. Additionally, 99.7% of the 
cycle length predictions and 99.9% of the peaking factor 
predictions fall within three sigma range (3σ) of the 
ST/RK-calculated values, demonstrating the model’s 
reliability. 
 

Table III: Relative errors of cycle length and peaking factor 
between ST/RK calculations and predictions of models trained 

using random loading pattern dataset (All error metrics are 
expressed in [%]). 

Error metric Cycle length Peaking factor 

RMS error (𝜎) 0.12 0.82 

Maximum error 0.85 19.8 

Percentage of 
errors within ±3𝜎 99.7 99.9 

 
2.3.2. Fine-tuning with near-optimal LP dataset 

 
To further improve the model's performance in the 

near-optimal region, we fine-tuned it using the near-
optimal LP data generated in the previous step. 

Figure 9 compares ST/RK calculation values with the 
model-predicted values for the test sets of both the 
random LP dataset and the near-optimal LP dataset 
before fine-tuning. The red reference line represents 
perfect prediction accuracy, while the black boundary 
lines indicate a ±2% relative error range. For cycle length, 
the model accurately predicts values even in the near-
optimal LP dataset. However, for the peaking factor, 
prediction accuracy significantly decreases in the near-
optimal region. This is primarily because the model, 
initially trained on randomly generated LPs, lacked 
sufficient data in the low peaking factor region. As a 
result, it struggled to make accurate predictions for LPs 
within the near-optimal space, where precise evaluation 
is critical. This highlights the importance of exposing the 
model to sufficient high-quality data in the optimal 
performance region during training. 

 

 
Fig. 9. Comparison of the core performance parameters 

between calculated value from ST/RK and predicted value by 
models before fine-tuning with the near-optimal loading 
pattern dataset. 

 
Figure 10 presents a similar comparison after fine-

tuning the model. The results show that fine-tuning 
greatly improves the model’s accuracy in predicting the 
peaking factor for near-optimal LPs. Most LP predictions 
closely align with the red reference line, and the majority 
fall within the black boundary lines, confirming the 
enhanced performance of the fine-tuned model. 
 

 
Fig. 10. Comparison of the core performance parameters 

between calculated value from ST/RK and predicted value by 
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models after fine-tuning with the near-optimal loading pattern 
dataset. 
 

Table 4 quantifies the relative error between ST/RK 
calculation results and model predictions. The RMS error 
is 0.12% for cycle length and 0.79% for peaking factor, 
showing the model achieves high prediction accuracy. 
The maximum absolute error is 0.86% for cycle length 
and 19.9% for peaking factors, indicating that some 
peaking factor predictions still have significant 
deviations. The ratio of absolute errors within 3σ remains 
high, at 99.8% for cycle length and 99.9% for peaking 
factor, confirming the model's reliability. These results 
demonstrate that the model can accurately infer LPs in 
the near-optimal region as well. 
 

Table IV: Relative errors of cycle length and peaking factor 
between ST/RK calculations and predictions of fine-tuned 
models using the near-optimal loading pattern dataset (All 

error metrics are expressed in [%]). 

Error metric Cycle length Peaking factor 

RMS error (𝜎) 0.12 0.79 

Maximum error 0.86 19.9 

Percentage of 
errors within ±3𝜎 99.8 99.9 

 
3. Loading Pattern Optimization 

 
In previous study, random and near-optimal LP 

generation methods were used to produce data and train 
the LP evaluation model to assess multi-cycle LPs. Using 
this model, we performed SA with screening technique. 
 
3.1 Simulated Annealing with a Screening Technique 
 

Figure 11 illustrates the LP search flowchart of the SA 
algorithm. In each iteration, an LP called 𝑋௨  is 
modified by selecting a random assembly and applying 
one of three modifications: changing the fuel assembly 
type, swapping positions with another assembly, or 
rotating the assembly one to three times by 90°. When 
changing assembly types or swapping positions, octant 
symmetry is maintained. The LP evaluation model then 
predicts the cycle length and peaking factor of the newly 
generated LP, 𝑋௪. Based on these values, the objective 
function 𝐽௪ is calculated using equation 1. 
 

(1)      PF CYCJ X J X J X   

 
In the equations, 𝑃𝐹  denotes the predicted peaking 

factor and 𝐶𝑌𝐶 denotes the predicted cycle length, both 
obtained from the ViT-based evaluation models. 𝑃𝐹(𝑋) 
and 𝐶𝑌𝐶(𝑋)  represent the values predicted for the 
candidate loading pattern 𝑋 , while 𝑃𝐹  and 𝐶𝑌𝐶 
are the corresponding values of the reference loading 
pattern. 
 

(2)  
  
 

3

1 ref

PF
ref ref

PF X PF
J X

PF PF X PF





 

 

(3)  
  
 

3

1 ref

CYC
ref ref

CYC X CYC
J X

CYC CYC X CYC





 

 
The valid range (𝐽, 𝐽௫) is determined within a 3𝜎 

range, where 𝜎 represents the RMS error of the model’s 
prediction across the entire dataset. Equation 4 illustrates 
how the valid range is defined, with  Δ𝐽തതത representing the 
bias of the model’s predictions for the total dataset. 
 

(4) max/min 3newJ J J     

 
The acceptance criterion 𝐽 is derived from current 

value 𝐽௨, like equation 5. 
 

(5) lnacp curJ J C    

 
If 𝐽 is greater than 𝐽, 𝑋௪ is rejected, and 𝑋௨  

is used to generate a new LP. If 𝐽௫ is lower than 𝐽, 
which means this LP is sufficiently good, the adjusted 
objective function, 𝐽ሚ௪ = 𝐽௪ + Δ𝐽തതത, is evaluated. After 
that, 𝑋௨  is updated to 𝑋௪  and 𝐽௨  is set by 𝐽ሚ௪ . If 
𝐽  falls within the range of 𝐽  to 𝐽௫ , a 3D 
deterministic calculation is performed to obtain the exact 
𝐽௪ , which is then used to update the model’s mean 
prediction error and sigma. If 𝐽௪  is lower than 𝐽௨ , 
𝑋௨  is then updated to 𝑋௪, and the process repeats. If 
the repeat number exceeds 200 times or 𝑋௨  updates 10 
times, the temperature C is reduced, and the process 
restarts. If no 𝑋௨  updates occur after 200 times of 
repeat, the SA process terminates. 

Table 5 presents the SA results for Cycle 1 LP 
optimization using an AI-based screening technique. The 
efficiency represents the percentage of LP evaluations 
performed by AI. ST refers to the Screening Technique. 
The results show that, on average, 99.9% of LP 
evaluations were overseen by the AI model, significantly 
reducing computational time. Each SA process involved 
approximately 10,000 LP evaluations, with only about 
10 evaluations performed using RAST-K, demonstrating 
the high efficiency of AI-driven screening. 

Notably, despite being conducted on a single core 
without parallel processing, each SA process required 
only an average of 1.4 hours. In contrast, without AI-
based screening, the estimated computation time per 
process would have ranged from 800 to 900 hours. This 
substantial reduction in computational cost underscores 
the effectiveness of AI-based LP evaluation in 
accelerating SA optimization, making multi-cycle LP 
optimization practically feasible within a drastically 
shorter time. 
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Fig. 11. Flowchart of the optimal loading pattern search 

using simulated annealing with the screening technique [3]. 
 

Table V: Simulated Annealing results using AI-based 
Screening Technique for Cycle 1 LP optimization. 

Index  

No. of LP evaluation 
E

fficiency* 
[%

] 

C
alculation tim

e 
[hr.] 

E
stim

ated tim
e w

/o 
screening technique 

[hr.] 

R
A

S
T

-K
 

AI Total 

1 11 10138 10149 99.9 1.2 845.8 
2 12 10203 10215 99.9 1.3 851.3 
3 6 9683 9689 99.9 0.8 807.4 
4 9 9958 9967 99.9 1.0 830.6 
5 11 10305 10316 99.9 1.2 859.7 
6 14 10504 10518 99.9 1.5 876.5 
7 17 10853 10870 99.8 1.7 905.8 
8 10 10017 10027 99.9 1.1 835.6 
9 19 11214 11233 99.8 1.9 936.1 

10 19 10914 10933 99.8 1.9 911.1 
11 9 9934 9943 99.9 1.0 828.6 
12 10 10184 10194 99.9 1.1 849.5 
13 5 9535 9540 99.9 0.7 795.0 
14 19 11111 11130 99.8 1.9 927.5 
15 9 10048 10057 99.9 1.0 838.1 
16 18 11079 11097 99.8 1.8 924.8 
17 18 10858 10876 99.8 1.8 906.3 
18 20 11011 11031 99.8 2.0 919.3 
19 17 10938 10955 99.8 1.7 912.9 
20 5 9571 9576 99.9 0.7 798.0 

Avg. 12.9 10402.9 10415.8 99.9 1.4 868.0 

 
4. Results 

 
In Cycle 1, a new LP for the SA method is generated 

using fresh fuel assemblies of A0 to D2. Fresh fuel 
assemblies for Cycle 2 are E0 to E2. LP of Cycle 1 has a 

cycle length of 373.2 EFPDs and a peaking factor of 
1.5412 and LP of Cycle 2 has a cycle length of 275.8 
EFPDs and a peaking factor of 1.5442. Figure 12 shows 
the NDR fuel LP of Cycles 1 and 2. In the following 
figures, blue indicates fresh fuel and green shows the 
assembly is once burnt. 

 

 
Fig. 12. Reference fuel loading patterns of the Cycle 1 and 

Cycle 2 cores of Hanbit Unit 3 from the Nuclear Design 
Report [6]. 

 
There are three methods for generating new LPs in SA. 

The first method preserves the number of fuel assembly 
types, allowing only swapping and rotation of assemblies. 
The second method preserves only the enrichment value 
while allowing the assembly type change only their BP 
fractions are identical. For example, B0 and B2 have the 
same fuel enrichment but differ in the number of BP rods. 
In this case, B0 can be replaced with B2, and vice versa, 
within the LP. The third method allows all the changes 
for fresh fuel assembly within the fresh fuel assemblies 
used in the current cycle. However, the last approach 
alters the total U-235 mass in the core, potentially 
affecting fuel costs. 

In Cycle 2, the burnt fuel assemblies from the previous 
cycle may not exist in the optimized LP for Cycle 1, and 
thus  they are placed to match their previous positions 
and rotation numbers. the burnup values of the burnt fuel 
assembly are set based on the results of the Cycle 1 
optimal LP using the same LP shuffling method. The red 
boxes in the following figures highlight how the 
placement of fresh fuel assemblies has changed. 
 
4.1 Optimal LP with no assembly type change 

 
In this approach, the number of fuel assembly types 

remains unchanged, allowing only swapping and rotation 
of assemblies within the LP. By preserving the original 
assembly types from the NDR LP, this method optimizes 
the loading pattern while maintaining the initial fuel 
composition. Figure 13 represents optimized LPs. 
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Fig. 13. Optimal fuel LP while maintaining the number of 

fuel assembly types for Cycle 1 and Cycle 2 core of Hanbit 
Unit 3. Red boxes indicate changed positions of fresh fuel 
assemblies after optimization. 

 
In Cycle 1, the optimized LP achieved a cycle length of 
382.9 EFPDs and a peaking factor of 1.4750, showing 
improvement over the NDR core parameters (373.2 
EFPDs, 1.5412). In Cycle 2, the optimized LP achieved 
a cycle length of 277.2 EFPDs and a peaking factor of 
1.5356. This is an improvement over the NDR core 
parameters (275.8 EFPDs, 1.5442), showing a slight 
increase in cycle length and minor reduction in a peaking 
factor. This approach resulted in longer cycle lengths and 
reduced peaking factors. The improvement in a peaking 
factor indicates better power distribution, potentially 
enhancing core safety margins. 
 
4.2 Optimal LP with BP fraction change 

 
In this approach, the enrichment of each fuel assembly 

remains unchanged, while modifications to the BP mass 
fraction are allowed. This method provides greater 
flexibility in power distribution optimization without 
altering the overall U-235 mass in the core. Figure 14 
illustrates the optimal LP generated by SA. 

 

 
Fig. 14. Optimal fuel LP while BP fraction is changed by type 
conversion for Cycle 1 and Cycle 2 core of Hanbit Unit 3. Red 
boxes highlight assemblies with modified burnable poison 
fractions. 

 
For Cycle 1, the SA-optimized LP with BP fraction 

changes was identical to the LP obtained using the 
previous method, resulting in a cycle length of 382.9 
EFPDs and a peaking factor of 1.4750. This suggests that 
as long as the enrichment remains unchanged, BP 
modifications have minimal impact on optimization in 
Cycle 1. 

For Cycle 2, the BP fraction change approach 
produced an optimized LP with a cycle length of 277.4 
EFPDs and a peaking factor of 1.5422. This is an 
improvement over the NDR core parameters (275.8 
EFPDs, 1.5442), showing a slight increase in cycle 
length and minor reduction in a peaking factor. Although 
the enhancement is less pronounced than in Cycle 1, the 
method still demonstrates its potential for optimizing 
power distribution while maintaining core reactivity. 
 
4.3 Optimal LP with enrichment and BP fraction change 

 
This approach allows modifications to both the fuel 

enrichment and the BP mass fraction of fuel assemblies, 
providing the highest flexibility in optimizing core 
performance. Unlike the previous methods, which either 
preserved assembly types or only adjusted BP fractions, 
this approach enables more extensive reconfiguration of 
the LP by selecting assemblies with different U-235 
enrichment levels and BP content. However, altering 
enrichment directly impacts the total U-235 mass in the 
core, potentially affecting fuel costs and reactivity 
control. Figure 15 illustrates the optimal LP generated by 
SA. 

 

 
Fig. 15. Optimal fuel LP while enrichment and BP fraction 

are changed by type conversion for Cycle 1 and Cycle 2 core 
of Hanbit Unit 3. Red boxes show assemblies with both 
enrichment and BP fraction changes. 

 
For Cycle 1, the SA-optimized LP with both 

enrichment and BP fraction changes resulted in a cycle 
length of 389.5 EFPDs and a peaking factor of 1.5373. 
Compared to the NDR core parameters (373.2 EFPDs, 
1.5412), this approach significantly extended the cycle 
length while maintaining a comparable peaking factor. 

For Cycle 2, the optimized LP achieved a cycle length 
of 277.3 EFPDs and a peaking factor of 1.5439, 
compared to the NDR core values (275.8 EFPDs, 
1.5442). While the improvement in cycle length is 
modest, the approach provides enhanced flexibility in 
optimizing reactivity distribution. 
 

5. Conclusions 
 

In this study, a ViT-based multi-cycle prediction 
model was developed and validated for evaluating the 
fuel LP of the OPR-1000 reactor. Compared to 
conventional three-dimensional deterministic methods, 
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the proposed model significantly reduced computational 
costs while maintaining high prediction accuracy and 
demonstrating its effectiveness in multi-cycle LP 
evaluations. 

The model achieved strong agreement with ST/RK 
calculations, with an RMS error of 0.12% for cycle 
length and 0.82% for peaking factor when trained with 
randomly generated data. However, due to the limited 
representation of low peaking factor LPs in the random 
dataset, prediction accuracy was reduced in the near-
optimal region. To overcome this, we generated and 
incorporated near-optimal LP data through SA, which 
enabled fine-tuning of the model. As a result, the fine-
tuned model achieved improved accuracy, especially in 
the critical low peaking factor region, with an RMS error 
of 0.79%. 

Using the fine-tuned ViT evaluation model, LPs for 
Cycle 1 and Cycle 2 were successfully optimized through 
SA combined with a screening technique. This AI-based 
screening approach enabled over 99.9% of LP 
evaluations to be conducted by the model instead of full 
3D calculations, reducing the optimization time from 
hundreds of hours to just 1–2 hours on a single core 
without parallelization. 

All three LP generation methods assessed in this study 
led to extended cycle lengths and reduced peaking 
factors compared to the NDR LPs, confirming the 
effectiveness of the proposed methodology. The 
integration of a pin-wise ViT evaluation model with SA 
not only enhanced fuel cycle performance and core 
safety margins but also demonstrated significant 
potential for accelerating and automating the LP 
optimization process. 

Future research will focus on identifying optimal LPs 
beyond Cycle 3 and developing predictive models 
capable of estimating the best LP configurations for 
subsequent cycles. In parallel, efforts are ongoing to 
apply AI throughout the entire optimization process by 
developing an optimal LP generative model, with the aim 
of achieving full automation and further reducing 
computational costs in LP optimization. 
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