
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 22-23, 2025

Development of a FLUENT-Based Thermal-Hydraulic Analysis Code Framework

for Steam Generators using pyAnsys

Bumjin Choa, Jinsu Kima, Giwon Baeb, Hyoungkyu Chob and Minseop Songa*

a Department of Nuclear Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, Korea
b Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea

*Corresponding author: hysms@hanyang.ac.kr

*Keywords: Steam Generator, pyAnsys, Thermal-Fluid Analysis, Code Framework, ANSYS FLUENT

1. Introduction

Currently, the nuclear industry still relies on legacy

FORTRAN-based thermal–hydraulic analysis codes

developed in the 20th century to evaluate steam

generators and various reactor components. Codes such

as RELAP5 and MARS-KS adopt lumped-parameter or

channel-based models to represent steam generator

components and simulate two-phase flow phenomena.

In these models, the governing equations for mass,

momentum, and energy are solved numerically to

predict key parameters including pressure, temperature,

and void fraction [1, 2].

However, the lumped-parameter approach inherently

limits the ability to resolve detailed local flow structures

and complex interactions within the steam generator.

This reduced spatial resolution makes it difficult to

assess local phenomena such as tube degradation and

flow-induced vibration accurately. In addition, the

legacy FORTRAN implementations hinder accessibility

and automation for repetitive analyses. These

limitations highlight the need for modern thermal–

hydraulic codes that can perform high-fidelity analyses

of local variables like temperature, flow rate, and void

fraction, ultimately enhancing plant safety and

performance.

To address these demands, there is growing interest

in adopting modern Computational Fluid Dynamics

(CFD) techniques. A CFD-based framework offers

advanced modeling capabilities, high computational

efficiency, scalability, and flexible post-processing.

These features enable more precise and rapid

simulations, and CFD is expected to overcome the

limitations of legacy technical codes by effectively

solving complex thermal–hydraulic problems.

This study proposes a FLUENT-based thermal–

hydraulic simulation code framework that addresses the

shortcomings of legacy technical codes. A key library

used to build the framework is pyAnsys. PyAnsys is a

Python-based library developed for the seamless

integration and automation of ANSYS software [3].

With pyAnsys, various simulation tools can be

integrated and controlled through Python scripts,

enhancing the versatility and scalability of the analyses.

It also offers considerable advantages in automated

parameter optimization and repetitive analyses.

Moreover, as a FLUENT-based code, it incorporates the

reliability of the existing FLUENT software in the

analysis. In particular, the focus on steam generator

analysis is motivated by their role as critical

components in nuclear power plants, where detailed

evaluation of complex two-phase flow and heat transfer

phenomena is essential. Furthermore, the steam

generator serves as an example to verify the

applicability of this code framework. Future research

will focus on implementing and integrating all

components. A dedicated framework tailored for steam

generators helps avoid the potential confusion caused

by FLUENT’s extensive features that are not

specifically required for this application. For example,

the U.S. NRC has conducted nuclear reactor thermal–

hydraulic analyses using FLUENT. The FLUENT-

based thermal–hydraulic simulation code for steam

generators, currently under development using pyAnsys,

aims to maintain the macroscopic trends observed in

conventional FORTRAN-based codes while

incorporating the unique microscopic insights and

reliability inherent in modern CFD techniques.

In various fields, including biomedical engineering, a

semi-automated parametric workflow has been

developed using pyAnsys for personalized, patient-

specific modeling and simulation [4]. Additionally, in

the field of engineering education, an educational

approach has been implemented to enhance the skills of

undergraduate students by increasing accessibility to

ANSYS software through Python scripts [5].

Based on diverse pyAnsys applications, it is

anticipated that its use in nuclear engineering,

particularly for the parametric analysis of steam

generators, will enhance the design process by

improving both accessibility and reliability through

overall ANSYS analysis. In this study, development has

progressed through the implementation and initial

validation of various models, including test, case, GUI,

and conceptual problem models, thereby demonstrating

the potential of the proposed code framework and

establishing a foundation for future full system

integration. Additionally, the primary objective is to

complete the PyAnsys library analysis framework and

integrate it with a Python-based machine learning

library to create a comprehensive process for data

generation, model training, and analysis, which is a

critical step in developing ML models as alternatives to

3D CFD simulations.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 22-23, 2025

2. Methods

In this section, we describe the methodology and

essential requirements for developing a FLUENT‐based

thermal–hydraulic analysis code framework using

pyAnsys. As summarized in Figure 1, the proposed

framework comprises sequential steps of steam

generator geometry generation, meshing, solver setup,

calculation, and verification of result data. Each step is

automated through the integration of ANSYS software

and Python scripts. In addition, the suitability of the

framework for developing thermal–hydraulic analysis

code is verified in terms of integration, consistency,

scalability, User-Defined Function (UDF) applicability,

and reliability.

Fig. 1. Code Framework Diagram

2.1. Workflow for Framework

Thermal–hydraulic analysis codes follow the

processes of steam generator geometry generation,

meshing, solver setup, calculation, and verification of

result data, as demonstrated by the legacy codes. In

contrast to legacy codes, the present study leverages the

high readability and user–friendliness of Python to

interface with ANSYS software in the form of libraries.

By employing the pyAnsys library package provided by

ANSYS, the proven computational capabilities of

FLUENT are directly incorporated to ensure the

reliability of the analysis results.

The steam generator geometry is generated using the

pyAnsys–Geometry library within the ANSYS

SpaceClaim environment. Creating the steam generator

geometry requires ANSYS version 24R2. It follows a

conventional bottom-up approach that starts with a

work plane setup and then defines points, lines, surfaces,

and bodies. In this process, naming operations are

performed for each face and body to enable effective

identification of specific regions within the Python

scripts. The generated geometry is saved in the

SpaceClaim file format and passed to the subsequent

meshing step.

In the meshing step, the pyFluent-meshing mode is

utilized to generate a mesh based on the watertight

geometry type. At each step, an Application

Programming Interface (API) call is used to convert

FLUENT’s Text User Interface (TUI) command into

Python script format, thereby ensuring that the meshed

domain is seamlessly switched into solver mode.

The solver setup, calculation, and verification of

result data steps are performed using pyFluent-solver

mode. Rather than relying on FLUENT’s Graphic User

Interface (GUI) – based procedures, TUI commands are

converted into Python scripts to implement the

optimization and automation of parameters such as

initial and boundary conditions. By converting the

symbolic representations in FLUENT’s journal files as

summarized in Table I into Python scripts, a consistent

script–based analysis environment is established.

Table I: Mapping of TUI Commands to Python Scripts

TUI Python TUI Python

/ . Text ‘Text’

- _ ? None

2.2. Verification

As this study represents the first development of a

FLUENT–based thermal–hydraulic analysis code

framework using pyAnsys within a Python environment,

the suitability of pyAnsys for thermal–hydraulic code

development was verified based on the following

criteria.

First, with respect to integration, the framework was

evaluated to determine whether the entire steam

generator analysis process can be executed sequentially

within a single workflow. The approach of performing

individual processes separately and subsequently

integrating them was deemed undesirable due to

increased complexity and reduced usability.

Second, in terms of consistency, we verified that the

entire analysis setup and execution can be performed

solely using Python scripts without the need for manual

software operations or specific command interventions.

Third, the scalability of the framework was assessed

by evaluating its potential for integration with other

Python libraries and systems, such as pyQt and pyvista,

as well as its suitability for advanced research through

integration with deep learning libraries (e.g., tensorflow,

scikit–learn).

In addition, because the empirical correlations used

in this study are derived from well-established and

widely validated formulations in the literature, we

placed particular emphasis on verifying the applicability

of UDFs for implementing these correlations within the

FLUENT environment [6]. The processes for creating,

compiling, and applying the UDFs were systematically

evaluated to verify whether FLUENT can be

successfully controlled via Python scripts.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 22-23, 2025

Finally, by comparing the results obtained from the

script-based automation with those from the GUI

approach under identical analysis conditions, the impact

of minor discrepancies or input errors arising during

automation on the final results was analyzed, thereby

ensuring the overall reliability of the methodology.

3. Results

This section presents the outcomes of the validation

process for developing a thermal-hydraulic analysis

code framework using pyAnsys with FLUENT. Four

evaluation models were constructed to assess the

framework's integration, consistency, scalability, UDF

applicability, and reliability. The evaluation models

include the test model, case model, GUI model, and

conceptual problem model.

3.1. Test Model

To verify the feasibility of the basic framework, we

developed a test model using the simplest flow case,

namely the internal flow analysis of a pipe, as a basic

example. This model uses a single Python script to

control the entire process from geometry generation to

result verification. It also simulates the internal flow in

a simple pipe domain. Integration was confirmed by

executing the sequential workflow as described in

Figure 1. In this model, users specify geometry

parameters, such as diameter and total length, via a

command line interface. These inputs are extruded to

form the pipe domain, which is then visualized in real

time using the pyvista library. The geometry is

subsequently saved in scdocx format and exported to

pyFluent. Figure 2 illustrates both the parametric input

process and the rendered pipe geometry. Throughout

these steps, no performance bottlenecks or development

issues were encountered. This model verified that the

framework can successfully perform a complete flow

analysis on a simple domain, thereby laying the

groundwork for its application to steam generator

geometries.

3.2. Case Model

The case model extends the test model by

incorporating a steam generator geometry into the

simulation domain. This model is significant because it

tests the framework's ability to handle complex

geometries and a wider range of simulation conditions.

Creation of the steam generator geometry requires

ANSYS version 24R2 or later. This is because the

necessary sweep functions are available only from this

version onward. Integration, consistency, and scalability

were verified in this model, which employs

parameterized geometry generation. Figure 3 shows the

rendered shroud of the steam generator geometry,

produced via the pyvista library. In addition, the

activation of porous media features within FLUENT

was confirmed, ensuring that the model maintains

consistency with established thermal-hydraulic analyses.

Fig. 3. U-Tube Steam Generator Geometry and feedwater

flow in the shroud

3.3. GUI Model

The independently developed GUI model

demonstrates that the entire simulation process can be

controlled using a GUI built with pyQt and pyvista.

This interface covers tasks from steam generator

parameter input to meshing and solver settings. In this

model, input values from the pyQt-based GUI are

Fig. 2. Process of Test-Geometry Generation : (a) Definition of Geometry Parameter, (b) Creation of Bottom Circle,

(c) Extrusion of Bottom Circle and (d) Boundary Assignment

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 22-23, 2025

passed as parameters to the Python script, and the

simulation progress is visualized in real time using the

pyvista library. Figure 4 presents the prototype GUI.

Prototype tests confirmed that each step of the process

was executed correctly and that output files were

generated and stored as expected. The GUI represents

an advancement over legacy systems by enhancing user

friendliness and providing real time visualization of the

analysis.

Fig. 4. pyQt and pyvista-based Prototype GUI

3.4. Conceptual Problem Model

The conceptual problem model serves as the final

evaluation case, focusing on the applicability of UDFs

and the overall reliability of the framework. Although

the underlying algorithms remain the same, minor

discrepancies in settings or input errors can occur

during automated, script-based execution. To address

this issue, identical simulation conditions were applied

to both the script-based approach and the conventional

GUI-based approach. In this model, correlations based

on widely validated formulas were implemented as

UDFs, compiled, and applied at the solver setup step.

By successfully porting the required UDFs to FLUENT

using pyAnsys, we confirmed Python’s potential to

provide a highly scalable correlation database.

Two independent researchers performed the

calculations separately, one using Python scripts and the

other using the FLUENT GUI. Table Ⅱ summarizes

the turbulence model, initial conditions, boundary

conditions, and multiphase model used in the

calculations. The identical UDF, compiled and applied

in each case, implements various source terms and a

drift flux model to simulate multiphase flow and heat

transfer. Figure 5 illustrates the computational domain

in (a) and the corresponding contour data from the

pyAnsys environment (b) and the FLUENT GUI

approach (c).

Table Ⅱ: CFD Setup Parameters for Conceptual Problem

Parameter Value [Unit]

Inlet Velocity Laminar

Inlet Velocity 0.5 [m/s]

Temperature 530 [K]

Outlet Gauge Pressure 6.8948 [MPa]

Multiphase Model Mixture

Fig. 5. (a) Computational domain for the conceptual problem

model, and the resulting temperature contours obtained using

(b) pyAnsys and (c) the FLUENT GUI

Figure 6 presents the average temperature distribution

with respect to domain height. The identical results

from both methods indicate that FLUENT’s UDF

implementation compiles successfully within the

Python script environment and that the computational

setup and performance are consistently reproduced.

This confirms the reliability of the automated

framework.

4. Conclusion

In this study, we proposed a FLUENT-based thermal–

hydraulic analysis code framework designed to

overcome the limitations of conventional technical code

used for simulating internal flow phenomena within

steam generators of nuclear power plants. By leveraging

pyAnsys, the proposed framework integrates ANSYS

software with Python scripts to automate the entire

process from geometry generation and meshing to

solver setup, calculation, and verification of result data.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 22-23, 2025

Fig. 6. Comparison between FLUENT GUI and pyAnsys

The results indicate that the framework successfully

replicates the macroscopic trends of legacy technical

code while providing enhanced microscopic insights

and improved reliability through CFD-based methods.

It is noteworthy that, although FLUENT can handle a

wide range of nuclear system applications, its extensive

feature set can sometimes introduce unnecessary

complexity in focused steam generator analysis; the

proposed Python-based framework streamlines

simulation setup and computation while facilitating

advanced automation and optimization.

Notably, the implementation of a Python script-based

workflow and a user-friendly GUI improves the

accessibility and efficiency of the simulation process.

Validation through multiple evaluation models, namely

the test, case, GUI, and conceptual problem models,

confirmed the framework's integration, consistency,

scalability, and reliability. Furthermore, the successful

implementation of correlations as UDFs within the

FLUENT environment demonstrates that the proposed

framework can maintain the key features of existing

codes while enabling automated parameter optimization

and real-time visualization. In addition, this study

explores whether the pyAnsys-based framework can

function as an integrated model, offering a unified

approach to thermal–hydraulic analysis with

considerable promise for design optimization of heat

exchangers and various other devices.

In the future, our primary objective is to develop a

prototype code that encompasses all the analysis

functionalities provided by legacy technical codes such

as RELAP5 and MARS-KS. The entire process will be

continuously verified against the conventional code,

and through ongoing collaboration among research

groups, we plan to regularly review the performance

and execution to accelerate the development pace.

Acknowledgements

This research was supported by the National Research

Council of Science & Technology (NST) grant by the

Korea government (MSIT) (No. GTL24031-000).

REFERENCES

[1] The Thermal Hydraulics Group, "RELAP5/MOD3 Code

Manual Volume I: Code Structure, System Models, and

Solution Methods", RELAP5/MOD3.2.2 Beta, NUREG/CR-

5535, Scientech, Inc., Idaho Falls, Idaho, March 1998.

[2] Korea Atomic Energy Research Institute (KAERI),

"MARS Code Manual," KAERI/TR-3872/2009, Daejeon,

Korea, 2009.

[3] PyAnsys Documentation, "User Guide," [Online].

Available:https://docs.pyansys.com/version/dev/user_guide.ht

ml., Accessed: Mar. 8, 2025.

[4] J. Gosez, K. El Houari, S. Collin, G. Harika-Germaneau,

A. Germaneau, and N. Jaafari, "Brainstim, a tool for

automated personalized tDCS computational modeling based

on PyAnsys," Brain Stimulation, vol. 16, no. 1, p. 269, Jan.–

Feb. 2023.

[5] S. Cooke, S. Coleman, and J. Derrick, "Exploring the

potential for scripting with simulation in engineering

education – Practical examples using Python and Ansys," in

Proceedings of the SEFI Annual Conference 2023, TU Dublin,

Ireland, Sep. 11–14, 2023.

[6] R. M. C. So and C. G. Speziale, "A review of turbulent

heat transfer modeling," Annual Review of Heat Transfer, vol.

10, no. 1, pp. 70–101, Jan. 1999.

https://docs.pyansys.com/version/dev/user_guide.html
https://docs.pyansys.com/version/dev/user_guide.html

