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1. Introduction 

 
Integrated severe accident analysis codes—such as 

CINEMA, MELCOR, MAAP, and ASTEC—have long 

been employed by industry, regulatory authorities, and 

the academic community for evaluating severe accidents 

in nuclear power plants (NPPs) [1]. These codes utilize 

complex numerical models to simulate detailed physical 

phenomena; however, the resulting computational 

burden often leads to prohibitively long simulation times, 

rendering them unsuitable for real-time decision-making. 

Recent advances in data-driven techniques, 

particularly deep learning, have shown promise in 

expediting these prediction processes [2]. Deep learning, 

with its universal function approximation capability, can 

be trained on simulation outputs from severe accident 

codes and subsequently generate rapid predictions, 

facilitating near- or real-time assessment. Moreover, 

emerging research has explored deep reinforcement 

learning to automate and optimize accident mitigation 

strategies [3]. 

Although these developments, conventional deep 

learning models are frequently regarded as “black boxes,” 

presenting challenges in terms of interpretability and 

regulatory acceptance [4]. Concerns persist regarding the 

extent to which data-driven methods can supplant—or 

complement—traditional physics-based analyses. 

Physics-Informed Neural Networks (PINNs) have been 

proposed to integrate physical constraints directly into 

neural network architectures [5], but practical limitations 

remain, such as difficulties in scaling to high-

dimensional, multi-variable systems and sustaining real-

time performance under substantial computational 

demands. 

Even so, deep learning holds significant potential for 

expediting severe accident prediction. In this paper, we 

focus exclusively on revisiting the technical and practical 

constraints that arise when applying deep learning-based 

models derived from integrated accident analysis codes. 

Through this examination, we aim to elucidate the 

current limitations and suggest directions for addressing 

them in future work. 

The remainder of this paper is organized as follows. 

Section 2 offers a brief review of the literature on deep 

learning applications in severe accident analysis. Section 

3 introduces representative deep learning-based 

prediction models and outlines their methodologies. 

Section 4 provides an in-depth discussion of the technical 

and practical constraints these models face in real-world 

scenarios, including issues of scalability, interpretability, 

and computational efficiency. Finally, Section 5 

concludes the paper by summarizing key findings and 

highlighting possible avenues for future research. 

2. Methods and Results 

 

2. Basic Concepts of Numerical Solvers, Deep Learning, 

and Physics-Informed Neural Networks 

Figure 1 highlights the distinct yet complementary roles 

of traditional numerical solvers, purely data‐driven deep 

learning (DNNs), and physics‐informed neural networks 

(PINNs). 

  
Figure 1 Conceptual diagram positioning the numerical 

solver, PINN, and DNN along the two axes: from purely 

physics‐based approaches (no data) to purely data‐driven 

approaches (big data), and from full physics to no 

physics. 

 

Numerical solvers refer to algorithmic frameworks that 

approximate solutions to governing equations, such as 

ordinary or partial differential equations, by discretizing 

the continuous domain and iteratively computing 

approximate values of the solution variables. 

Purely data‐driven DNNs aim to learn functional 

relationships directly from large datasets, often without 

explicit consideration of underlying physical laws. Such 

models rely on the premise that, with sufficient data and 

model capacity, DNNs can approximate complex input–
output mappings. However, in domains where data are 

scarce or expensive to obtain, purely data‐driven 

approaches may overfit or generalize poorly, as they lack 

the inductive biases that physical constraints can provide. 

PINNs explicitly integrate physical laws (e.g., partial 

differential equations) into the neural‐network training 

process by penalizing deviations from these governing 

equations in the loss function. As a result, the model is 

constrained to respect conservation principles and 

boundary or initial conditions, even in data‐scarce 

scenarios. This synergy between data‐driven learning 
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and first‐principles knowledge improves model 

generalizability and interpretability, ensuring that 

physically meaningful solutions are learned. 

 

3. Surrogate Modeling via Deep Learning: Process and 

Limitations of Purely Data-Driven Approaches 

3.1. Process of Surrogate Modelling Using Conventional 

Deep Learning 

The prediction of severe accident progression via a 

conventional deep learning-based, data-driven approach 

is accomplished through the process illustrated in Figure 

1. In this process, surrogate models are developed that 

emulates the integrated severe accident analysis codes. 

Although various surrogate modelling approaches exist, 

in this paper the term "surrogate modelling" is used 

exclusively to refer to deep learning-based, data-driven 

methods [6]. 

 

 
Figure 2 Overall research process for data-driven 

methodologies for surrogate modelling 

 

In the process illustrated in Figure 2, the first step is the 

selection of a reference NPP and target scenarios. During 

this stage, a list of Engineered Safety Feature operations 

and failures, as well as mitigation strategies using Multi-

barrier Accident Coping STrategy (MACST), is 

established. Following this, a dataset is constructed using 

the integrated severe accident analysis code—a step that 

is both computationally intensive and critical, as the 

quality of the surrogate model is directly dependent on 

the quality of the dataset. The primary objective of this 

phase is to compute scenarios by varying the sampling of 

the implementation timings for safety system operations, 

failure timings, and the implementation of mitigation 

strategies within the target scenarios. Subsequently, 

surrogate models are designed based on deep learning 

(artificial neural networks) and trained using the 

generated dataset. The evaluation of the trained surrogate 

model is based on the similarity between its predicted 

time series and the "true" values—assumed to be those 

computed by the existing integrated severe accident 

analysis code—as well as its inference speed. 

Additionally, situational resilience may be incorporated 

to ensure that the surrogate model can operate smoothly 

on portable devices in scenarios where power and 

communications are completely disrupted. 

 

2.3. Limitations of Surrogate Modelling based on Pure 

Data-driven Approach 

Purely data-driven models—particularly deep learning 

(DL)—offer compelling predictive power but face 

notable shortcomings in safety-critical applications like 

severe accident analysis. Foremost is their lack of 

explainability: deep neural networks often function as 

“black boxes,” obscuring how millions of parameters 

combine to produce a given output. This interpretability 

gap complicates trust and acceptance, especially in 

regulated contexts where clear justification of model 

behavior is essential [4]. 

Equally important is the issue of data quality and quantity. 

Generating representative datasets for severe accidents is 

both expensive and time-consuming, making it 

challenging to capture the full spectrum of possible 

scenarios. When a model encounters conditions outside 

its training distribution—so-called extrapolation—it is 

difficult to predict how accurately it will perform. 

Consequently, purely data-driven models risk delivering 

unreliable results under off-design or extreme conditions, 

which is unacceptable for high-stakes decision-making. 

Embedding physical constraints or leveraging physics-

based models can mitigate some of these issues by 

providing inductive biases and reducing reliance on 

prohibitively large, high-fidelity datasets. 

 

 

 

3. Physics-Informed Neural Networks and its 

Application 

3.1. Basic Concept of Physics-Informed Neural 

Networks 

Physics-Informed Neural Networks (PINNs) are a 

methodological framework in which deep learning 

models are trained to directly satisfy physical laws (e.g., 

partial differential equations or conservation laws) [5]. 

Unlike conventional machine learning approaches that 

primarily rely on large-scale labeled data, PINNs 

incorporate the structural constraints of governing 

equations and initial or boundary conditions into the loss 

function. Specifically, the model’s predictions are 

evaluated against the underlying physical equations, and 

a term quantifying the discrepancy is included in the loss. 

During backpropagation, this term steers the 

optimization of network parameters in a physically 

consistent manner. Consequently, even in scenarios 

where observational data are scarce or difficult to obtain, 

PINNs—potentially integrated with numerical 

methods—facilitate the discovery of solutions that 

remain consistent with physical principles, thereby 

enabling more accurate and efficient estimation of 

complex physical systems. 

 

3.2. Transient Heat Flow in a Semi-Infinite Heat Slab 

Transient heat flow in a semi-infinite heat slab 

constitutes MELCOR's Gedanken C problem. To 

evaluate the MELCOR heat conduction models, 

predictions for heat conduction in a solid are 

benchmarked against the exact analytical solution for 

transient heat transfer in a semi-infinite solid with 

convective boundary conditions [7]. 

In MELCOR, transient heat flow in a semi-infinite solid 

with convective boundary conditions is approximated 

using a 10 m-thick finite slab. The slab’s nodes are 

distributed logarithmically, with the smallest spacing on 

the left side, which faces a large control volume and has 

a convective boundary condition (heat transfer 
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coefficient of 10 W/m²K). An adiabatic boundary 

condition is applied on the slab’s right side, effectively 

simulating a semi-infinite domain. 

 

3.3. PINN Formulation for the Semi-Infinite Heat Slab 

Problem 

 

Building on the transient heat flow problem described 

above, we now illustrate how a Physics-Informed Neural 

Network (PINN) can be formulated and trained to 

approximate the solution for heat conduction in a semi-

infinite slab. The semi-infinite domain is approximated 

in MELCOR by a 10 m-thick finite slab with logarithmic 

nodal spacing; here, we use PINNs to directly encode the 

governing heat conduction equation and boundary 

conditions into the network’s loss function. 

 

3.3.1. Governing Equations and Boundary Conditions   

The transient, one-dimensional heat conduction in a 

semi-infinite slab (x ≥ 0) is governed by the following 

partial differential equation (PDE): 

 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 

 

where (𝑇(𝑥, 𝑡))  is the temperature, (𝑥)  is the spatial 

coordinate, (𝑡) is time, and (𝛼) is the thermal diffusivity 

of the slab material. In MELCOR’s semi-infinite slab 

problem, the left boundary ((𝑥 = 0))  is subject to a 

convective boundary condition: 

−𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=0
= ℎ  (𝑇(0, 𝑡) − 𝑇∞) 

 

where (𝑘) is the thermal conductivity of the slab, \(h\) is 

the heat transfer coefficient (10 W/m²K in this example), 

and (𝑇∞)  is the ambient temperature of the control 

volume on the left side. Meanwhile, the right boundary 

((𝑥 = 10 m)) is assumed to be adiabatic: 

 

[
𝜕𝑇

𝜕𝑥
|

𝑥=10
= 0. ] 

 

An initial condition (𝑇(𝑥, 0) = 𝑇0)  for the entire slab 

completes the problem specification. These conditions 

collectively reproduce the physical setup of a semi-

infinite domain for short- to medium-duration transients, 

as the temperature gradients at the right boundary remain 

minimal if sufficiently insulated and the analysis 

timeframe is not too long. 

 

3.3.2. Loss Function Construction in PINNs   

A key distinction of PINNs is that they embed the PDE 

and boundary conditions directly into the loss function. 

Specifically, the total loss (ℒ) typically comprises three 

main components: 

 

1. Data Loss (ℒ𝒹𝓉):   

   If any temperature data points ((𝑥𝑖 , 𝑡𝑖, 𝑇𝑖)) 

 are available (e.g., from sensor measurements or high-

fidelity simulations), the model predictions (�̂�(𝑥𝑖 , 𝑡𝑖))  

are penalized via a mean squared error (MSE) term:   

    

ℒ𝒹𝓉 =
1

𝑁data
∑ (�̂�(𝑥𝑖 , 𝑡𝑖) − 𝑇𝑖)

2𝑁data
𝑖=1 . 

    

 

2. PDE 𝐿𝑜𝑠𝑠( ℒ𝒫ℰ):   

   The residual of the PDE is enforced by sampling 

collocation points (𝑥𝑗 , 𝑡𝑗) in the interior of the domain 

and time span. The partial derivatives 𝜕�̂�/𝜕𝑡  and 

(𝜕2�̂�/𝜕𝑥2) are computed via automatic differentiation, 

and the MSE of the PDE residual is added to the loss:   

   

 ℒ𝒫ℰ =
1

𝑁PDE

∑ (
𝜕�̂�

𝜕𝑡
(𝑥𝑗 , 𝑡𝑗) − 𝛼

𝜕2�̂�

𝜕𝑥2
(𝑥𝑗 , 𝑡𝑗))

2𝑁PDE

𝑗=1

 

 

3. Boundary and Initial Condition Loss (ℒℬ,ℐ):   

   For boundary conditions, points are placed at ( 𝑥 = 0 ) 

 and (𝑥 = 10 m). The PINN is trained to satisfy: 

 

[−𝑘
𝜕�̂�

𝜕𝑥
|

𝑥=0

− ℎ (�̂�(0, 𝑡) − 𝑇∞) = 0,  
𝜕�̂�

𝜕𝑥
|

𝑥=10

= 0. ] 

 

   Similarly, for the initial condition, (𝑇(𝑥, 0) = 𝑇0) 

. The MSEs of these constraints at designated collocation 

points along the boundaries and initial plane are added to 

the total loss.   

 

Hence, the overall loss function is: 

 

ℒ = 𝜔data  ℒ𝒹𝓉 + 𝜔PDE   ℒ𝒫ℰ + 𝜔BC,IC ℒℬ,ℐ , 
 

where (𝜔data) , (𝜔PDE) , and (𝜔BC,IC)  are weighting 

factors that balance the influence of data fitting versus 

physical constraints. 

 

3.3.3. Training and Evaluation   

Once the loss function is specified, the network can be 

trained via gradient-based optimizers (e.g., AdamW, L-

BFGS) with automatic differentiation enabling exact 

gradients of (�̂�) with respect to both space and time. The 

trained PINN yields a continuous mapping ((𝑥, 𝑡) ↦ 𝑇), 

which can be evaluated at any point in the domain 

without the need for explicit spatial discretization. 

 

To gauge its performance, the PINN solution can be 

compared against: 

1. Analytical Solutions: For a semi-infinite slab with a 

convective boundary at (𝑥 = 0), well-known solutions 

(e.g., those involving the error function (erf(⋅))  for 

simpler boundary conditions) or published references 

can be used to assess accuracy. 

2. Numerical Solutions: MELCOR’s discretized model 

provides nodal temperature values over time. Comparing 

the PINN-predicted temperature profiles with MELCOR 
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solutions, especially near the left boundary where large 

temperature gradients occur, offers a direct validation of 

how well the PINN replicates high-fidelity severe 

accident analysis code outputs. 

 

 
 

3.3.4. Practical Considerations in PINN Deployment   

Although PINNs naturally incorporate physical 

constraints, a few practical considerations arise in using 

them for real-world problems: 

 

- Hyperparameter Selection: Choosing appropriate 

network depth, width, activation functions, and 

weighting coefficients (𝜔)  can significantly impact 

convergence and stability. 

- Computational Cost: While PINNs can offer smooth, 

mesh-free solutions, training can be computationally 

intensive if the domain or timescale is large. Efficient 

sampling strategies and adaptive methods (e.g., adaptive 

collocation point selection) may be necessary to scale up 

to more complex problems in severe accident scenarios. 

 

4. Discussion of Technical and Practical Constraints 

 

In this section, we broaden the perspective beyond the 

heat slab example to address the overarching limitations 

and challenges associated with applying deep learning—

and particularly PINNs—to severe accident analysis. 

These issues encompass scaling to high-dimensional 

systems, ensuring numerical stability and interpretability, 

and meeting the real-time or near real-time 

computational requirements often demanded by safety-

critical applications. Furthermore, questions of 

regulatory acceptance and validation remain open, 

underscoring the importance of transparent model 

development and robust uncertainty quantification. 

 

By exploring both the strengths and weaknesses of 

purely data-driven DNNs and physics-informed 

approaches, we aim to map out a balanced research 

roadmap—one that leverages the complementary 

capabilities of traditional numerical solvers and 

advanced machine-learning frameworks to achieve both 

accuracy and computational feasibility in the context of 

severe accident management. 
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