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1. Introduction 

 
Small Modular Reactors (SMRs) are garnering global 

attention as a transformative solution for sustainable and 

clean energy production. Small Modular Reactors 

(SMRs) have garnered attention as a technology capable 

of producing sustainable and environmentally friendly 

energy. Compared to traditional large-scale reactors, 

SMRs offer advantages such as enhanced safety, 

modular design, and flexible power generation. However, 

they also face practical challenges, including higher 

generation costs and limited construction and operational 

experience. To overcome these limitations and maximize 

SMR efficiency, computational fluid dynamics (CFD) 

has been widely utilized for optimization studies. 

CFD is a powerful tool for analyzing fluid flow 

behavior in physical systems. However, high-resolution 

simulations present a significant challenge due to the 

exponentially increasing computational cost. In 

particular, the Navier-Stokes equations lack an analytical 

solution, necessitating the use of numerical methods, 

which impose high computational demands [1]. 

Traditional numerical approaches, such as the finite 

volume method (FVM), require high-resolution meshes, 

making real-time CFD simulations for complex 

geometries impractical. Consequently, machine learning 

(ML)-based CFD acceleration techniques have emerged 

as a crucial research area [2,3]. 

Representative recent studies have leveraged AI 

models such as physics-informed neural networks 

(PINNs) [4] and deep operator networks (DeepONet) [5] 

to accelerate CFD simulations, demonstrating superior 

computational efficiency compared to conventional 

numerical methods. Especially, Jeon et al. developed a 

finite volume method network (FVMN) model to predict 

a CFD time series by introducing FVM principles into 

the network architecture and the loss function [6]. 

However, existing research still faces several challenges, 

including: (1) limited applicability to complex 

geometries, (2) accuracy and stability issues in long-term 

simulations, and (3) a lack of validation for specialized 

systems such as nuclear reactors. 

This study applies the Latent Deep Neural Operator 

(L-DeepONet) to develop an AI-based surrogate model 

for CFD acceleration and evaluate its performance[7]. L-

DeepONet extends DeepONet by incorporating an 

autoencoder structure, compressing high-dimensional 

CFD data into a lower-dimensional latent space to enable 

more efficient learning and prediction [8]. This approach 

allows for accurate approximation of complex flow 

fields with significantly lower computational costs 

compared to conventional numerical methods. 

 

2. Methods 

 

In this section, the model architecture, training 

methodology, and data preprocessing techniques used in 

this study are described in detail. 

 

2.1 Latent Space based DeepONet 

 

DeepONet is an operator learning model based on the 

universal approximation theorem [9], designed to map 

input functions to output functions. It consists of two 

sub-networks: the branch net, which trains input function 

characteristics, and the trunk net, which maps spatial-

temporal coordinates to output function. The final 

prediction is obtained by combining outputs from both 

networks. DeepONet has demonstrated high accuracy, 

fast convergence, and reduced generalization error 

compared to conventional neural networks. 

As a data-driven model, DeepONet requires CFD data 

for training. CFD simulations require significant 

computational costs, especially in thermal-hydraulic 

analysis of nuclear reactors, where complex geometries 

demand extensive calculation resources. To address this 

challenge, L-DeepONet is introduced, which trains 

DeepONet in a latent space using a dimension-reduction 

neural network. This approach leverages a pretrained 

autoencoder’s encoder to compress high-dimensional 

CFD data into a lower-dimensional space for efficient 

training. After training, a decoder reconstructs the 

original high-dimensional data. 

By learning high-dimensional CFD data in a reduced 

space, L-DeepONet significantly reduces calculation 
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time and GPU resource requirements, making it a 

promising surrogate model for fluid simulation in SMRs. 

The architecture of L-DeepONet is illustrated in Figure 

1.

 
Figure 1.  L-DeepONet architecture for CFD applications 

 

2.2 Datasets 

 

A two-dimensional (2D) transient CFD dataset was 

contructed to analyze the primary-side cross-flow in a 

helical coil steam generator (HCSG) within a SMRs. 

This study is based on the SMART reactor design 

parameters from the Korea Atomic Energy Research 

Institute (KAERI). ANSYS SpaceClaim 24.2.0 was used 

for geometry generation, while ANSYS Fluent 24.2.0 

was employed for flow simulations. Simulations were 

conducted under inlet velocity conditions of 0.05 m/s, 

0.1 m/s, 0.15 m/s, 0.2 m/s, and 0.3 m/s, with an outlet 

gauge pressure of 0 Pa and no-slip boundary conditions 

on all solid walls. Water was used as the working fluid, 

and the Shear Stress Transport (SST) k-ω model was 

applied for turbulence modeling. The dataset primarily 

focuses on analyzing the formation of the Karman vortex 

street in the wake region behind the tube bundle. 

In Geometry 1, Karman vortex shedding occurs at 

lower inlet velocities (0.05–0.2 m/s), but at 0.3 m/s, the 

flow stabilizes. This phenomenon is attributed to its 

straight-row tube arrangement, longer radial length (306 

mm), and shorter axial length (77 mm), which promote 

streamlined flow at high Reynolds numbers. It is 

illustrated below Figure 2. 

 

 
Figure 2. Domain of Geometry 1 

 

In contrast, as shown in Figure 3, Geometry 2 exhibits 

persistent Karman vortex shedding across all inlet 

velocities, with strong wake interactions. Its staggered 

tube arrangement, shorter radial length (252 mm), and 

longer axial length (94 mm) contribute to increased 

turbulence and mixing effects. 

 

 
Figure 3. Domain of Geometry 2 

 

In conclusion, Geometry 1 tends to develop stable 

flow at high velocities, whereas Geometry 2 maintains 

continuous vortex shedding. This study provides 

fundamental data for understanding HCSG flow 

dynamics and optimizing reactor design. 

 

2.3 Training method 

 

To facilitate the training of the AutoEncoder and 

DeepONet, we performed a preprocessing step on the 

CFD dataset, which is detailed in Section 2.2. The dataset 

includes flow fields with inlet velocities of 0.05 m/s, 0.1 

m/s, and 0.2 m/s as initial conditions, along with velocity 

magnitude data across all time steps. Specifically, we 

utilized simulation data over 10s with 100 timesteps, 

each with a size of 0.1. The hyperparameters, such as the 

number of training epochs, used for model learning are 

summarized in Table 1 below. 

 

Table I: Hyperparameter used in learning L-DeepONet 

 Epoch 
Batch 

size 

Learning 

rate 
Loss 

AutoEncoder 10000 90 10 -3 MSE 

DeepONet 90000 3 10-4 MSE 

 

3. Results 

 

We measured and compared the interpolation and 

extrapolation performance for initial conditions of 0.15 

m/s and 0.3 m/s, respectively. First in Geometry 1, the 

model showed poor performance at an inlet velocity of 

0.15 m/s. The model failed to accurately predict the flow 

field even at the initial stage t = 0.1s, and this issue 

persisted throughout the simulation. This indicates that 

the model did not sufficiently learn the flow 

characteristics at this particular inlet velocity. However, 

at a higher inlet velocity of 0.3 m/s, the model 

demonstrated improved predictions. Although the 

velocity scale and trends were not perfectly accurate, the 

prediction is similar to the stable flow which is seen in 

the CFD data. Nevertheless, Prediction is deviate the 

stable state after 95 time step. 

For Geometry 2, at an inlet velocity of 0.15 m/s, the 

model achieved higher accuracy compared to Geometry 

1. It successfully captured the flow structures around the 

cylinder arrays and effectively reproduced the periodic 

nature of the Karman vortex street in the wake region. 
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Likewise, at a higher velocity of 0.3 m/s, the model’s 

prediction  can capture the Karman vortex flow patterns. 

 
Figure 3. Ground truth and predict flow in Geometry 1. 

(a), (b), (c), (g), (h), and (i) correspond to an inlet 

velocity of 0.15 m/s, while (d), (e), (f), (j), (k), and (l) 

correspond to an inlet velocity of 0.3 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Ground truth and predict flow in Geometry 2. 

(a), (b), (c), (g), (h), and (i) correspond to an inlet 

velocity of 0.15 m/s, while (d), (e), (f), (j), (k), and (l) 

correspond to an inlet velocity of 0.3 m/s. 

 

Additionally, we analyzed velocity variations at 

specific node locations over time. In both Geometry 1 

and Geometry 2, velocity magnitude variations over time 

were analyzed at three selected node locations. In 

Geometry 1, node 14104 is positioned 50 mm to the left, 

node 14318 is located at the geometric center, and node 

14282 is located 50 mm to the right of the geometric 

center. For, Geometry 2, node 14380 is positioned 50 

mm to the left, node 20504 is located at the geometric 

center, and node 14203 is located 50 mm to the right of 

the geometric center. 

In Geometry 1 at 0.15 m/s, we can confirm the graph 

patterns can’t follow the ground truth. On the other hand 

at 0.3 m/s, velocity magnitude scale is inaccurate but the 

model showed similarities to the ground truth at certain 

locations. Geometry 2 showed better overall predictions, 

capturing general flow trends effectively. Notably, at 

node 20504, despite inaccuracies in magnitude, the 

model was capable of reproducing the characteristic 

periodic velocity fluctuations. These results are 

illustrated in Figures 5 to 8 below. 

Geometry 1 ground truth Geometry 1 predicted flow 

 

(a) 0.1s (g) 0.1s 

  
(b) 5s (h) 5s 

  
(c) 10s (i) 10s 

  
  

(d) 0.1s (j) 0.1s 

  
(e) 5s (k) 5s 

  
(f) 10s (l) 10s 

  

 

Geometry 2 ground truth Geometry 2 predicted flow 

 

(a) 0.1s (g) 0.1s 

  
(b) 5s (h) 5s 

  
(c) 10s (i) 10s 

  
  

(d) 0.1s (j) 0.1s 

  
(e) 5s (k) 5s 

  
(f) 10s (l) 10s 
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Figure 5.  Comparison of Velocity magnitude in the 

Geometry 1 nodes when inlet velocity is 0.15 m/s. 

 

 
Figure 6.  Comparison of Velocity magnitude in the 

Geometry 1 nodes when inlet velocity is 0.3 m/s. 

 

 
Figure 7.  Comparison of Velocity magnitude in the 

Geometry 2 nodes when inlet velocity is 0.15 m/s. 

 

 
Figure 8.  Comparison of Velocity magnitude in the 

Geometry 2 nodes when inlet velocity is 0.3 m/s. 

 

In summary, our L-DeepONet exhibited superior 

interpolation and extrapolation performance in more 

complex geometries compared to simpler ones. Although 

it did not achieve optimal predictive accuracy, it 

successfully learned the periodic patterns. In particular, 

Geometry 2 demonstrated better performance despite its 

more complex shape, which can be attributed to the 

stronger periodicity of the Kármán vortex flow in the 

training data of Geometry 2 compared to Geometry 1. 

These results suggest that if L-DeepONet sufficiently 

learns continuous flow characteristics, its performance 

can be further improved. 

 

4. Conclusions 

 

A preliminary study applying the L-DeepONet model 

to a partial geometry of the Helical Coil Steam Generator 

(HCSG) demonstrated that it effectively accelerates CFD 

simulations even for complex geometries, despite being 

trained on a limited dataset. These findings suggest the 

potential applicability of this CFD acceleration 

methodology to realistic, full-scale SMR geometries. 

Future studies incorporating diverse initial and boundary 

conditions are expected to further enhance the 

generalization capability of the model. In addition, 3D 

expansion is essential so that it can be applied to actual 

SMR geometries. In Junyan He et al [10]and Ali Rabeh 

et al [11], signed distance function were used to show the 

enough generalization performance of the DeepONet 

model in three dimensions. However, most studies like 

these are steady-state analysis. Hence our goal is to 

expansion these method to transient analysis for 

simulation the 3D SMR geometries. 
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