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≫ Computational Fluid Dynamics (CFD) is a method to simulate the flow of liquids and gases based on the conservation 

equations of mass, momentum, and energy using computers.

① Mesh generation

② Select Governing Equations

③ Using the numerical methods like FVM, FEM, FDM to solve PDEs

④ Simulation

Computational Fluid Dynamics

Too expensive!!



≫ Fluid phenomena within nuclear reactors involve turbulence flow and heat transfer occurring simultaneously in complex geometries.

≫ Calculating at DNS and LES levels requires a dense grid, but such grid scales are realistically impossible at the reactor scale.

≫ In the case of reactive flows such as hydrogen combustion, the calculation time required is very long due to the discrepancy between the 

chemical reaction time within the fluid and the flow time scales.
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Disadvantages of CFD

Too expensive!!

❖ Turbulence flow

❖ hydrogen combustion→ 1s simulation : 100 hours(Tolias et al., 2018)

Code Computational Domain Simulation Time

FLACS 20 × 14.4 × 12 m (Rectangular box) 6 h for 1 s

CFX 100 m (Cubic box) 48 h for 0.6 s

FLUENT Hemispherical radius 25 m 80 h for 0.45 s

ADREA-HF 42 × 60 × 30 m (Rectangular box) 315 h for 0.45 s

Tolias, I. C., et al. "Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure." Journal of loss 

prevention in the process industries 52 (2018): 125-139.



≫ Scientific Machine Learning(SciML) : A method of approach and interpretation utilizing machine learning based on 

scientific knowledge and data.

≫ Why SciML in CFD?

① Reduced simulation time compared to existing numerical methods

② Increased analysis accuracy in turbulence models

③ Furthermore, it can also be utilized to optimal flow control tasks.

≫ SciML Model

▪ Physics Informed Neural Network

▪ Operator Learning

▪ ML-CFD Hybrid Solver
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Acceleration High fidelity Flow control

This research examines SciML applicability to reactor geometry and to perform 

CFD acceleration research for digital twins.

CFD & SciML

SciML?
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② Method



≫ Operator Learning is learning the operator 𝐺 that takes function 𝑢 as input and outputs function s, through an artificial neural network.

≫ Universal Approximation Theorem for Operator?

: The Universal Approximation Theorem for Operators states that a feedforward neural network with a single hidden layer containing a finite 

number of neurons can approximate any continuous function to an arbitrary degree of accuracy, provided that the activation function is 

non-linear.
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✓  Neural Operator Model

1. Deep Operator Network(DeepONet)

2. Fourier Neural Operator

3. Laplace Neural Operator
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Operator Learning
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https://medium.com/data-science/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887#5221



≫ DeepONet consists of two components called Branchnet and Trunknet.

≫ Branchnet receives an initial condition of function as input and Trunknet takes coordinate information (time and space) as input.

≫ The output values of Branchnet and Trunknet calculated at the input coordinate (𝑡) is predicted through the inner product operation of the 

two values.

≫ DeepONet is supervised learning that is learning by minimizing the loss between predict output and ground truth.
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DeepONet

❖Architecture of DeepONet ❖Finiet Element Method(FEM) vs DeepONet
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FEM Equation DeepONet Equation

▪ Approximation functions as a linear 

combination of coefficients and basis 

functions

▪ Used fixed basis functions

▪ Re-simulations needed when input 

condition changes

▪ Neural network learns coefficients 

and basis functions to approximate 

functions. 

▪ Neural network learns optimal basis 

functions. 

▪ No re-simulations even with 

changes in input conditions.

"Predict the entire function at once"

𝑓(x, y)

𝐺 𝑓 𝑥, 𝑦 𝑡 = 𝑓(𝑥, 𝑦, 𝑡)

𝑡



≫ AutoEncoder is a dimensionality reduction model that learns to map important features of data to a lower-dimensional representation 

through a process of compressing and restoring input data.

≫ Autoencoders also exhibit a tendency to prioritize learning low-frequency structures over high-frequency details, which makes them 

particularly effective in capturing the global characteristics of the flow 

≫ Through the Encoder, we can obtain a low-dimensional representation that captures the overall structure of the input data.
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AutoEncoer

❖AutoEncoder vs PCA❖Architecture of AutoEncoder



≫ AutoEncoder(Dimensionality Reduction Model) + DeepONet (Neural Operator)

≫ L-DeepONet is a model that extracts only the core information of the input function through AutoEncoders and then uses this to train and 

predict with DeepONet.

≫ By utilizing L-DeepONet, it is possible to learn the overall characteristics of the data while also achieving computational efficiency.

≫ Because autoencoders focus on low-frequency structures, L-DeepONet is effective for predicting global flow behavior quickly, which is a 

benefit in CFD acceleration modeling for complex flows. 
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Latent DeepONet

❖Architecture of L-DeepONet

𝑓(𝑥, 𝑦, 𝑣)

𝑓(𝑥, 𝑦, 𝑣, 𝑡)



≫ To generate CFD flow fields, the primary side cross-section of a helical coil steam generator (HCSG) was modeled based on the SMART 

reactor design developed by the Korea Atomic Energy Research Institute (KAERI).

❖ Geometry 1

→ Geometry 1 is a latticed-array configuration where cylinders are aligned in straight rows to generate periodic Kármán vortex streets.

❖ Geometry2

→ Geometry 2 is a staggered-array configuration with offset rows, designed to analyze vortex interactions and wake deflection 

phenomena.
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Data Geometry



≫ According to the NuScale report, a comprehensive vibration assessment program was conducted to verify the structural integrity of 

systems and components against flow-induced vibration (FIV) mechanisms.

≫ Vortex shedding(VS) is one of the six flow-induced vibration mechanisms considered in the evaluation. 

≫ Therefore, this study aims to evaluate the performance of the CFD surrogate model by analyzing the Kármán vortex, a key flow 

phenomenon occurring in the helical coil steam generator.
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Why Kármán vortex?

❖ Table 1. NuScale Power Module components screened for susceptibility to flow induced vibration mechanisms

Component category Component
Mechanisms

FEI VS TB AR LFI F/G

Components exposed to

secondary side flow

SG steam plenum O

Helical SG tube O O O

SG tube inlet flow restrictors O O

SG tube supports

SG tube support bars O

SG lower support bars O O O

NuScale Power LLC. (2016), NuScale Comprehensive Vibration Assessment Program Technical Report, TR-0716-50439-NP.
[NSTAR-24NS11-512] 나선형 증기발생기 관련 규제사례 분석 및 현행 지침 적용가능성 검토



Solver Pressure-based

Fluid Material Water

Turbulence model SST k-w

Tube wall condition No-slip condition

Heat No consider

Density 998.2 (constant)

Viscosity 0.001 (constant)

Number of Time 

Step
1000

Time scale factor 0.01sec

≫ CFD data were generated by applying different initial inlet velocities for each of the two geometries using Ansys Fluent.

≫ Simulation time : 30 minutes for each initial condition

≫ The flow field is defined as a function of velocity magnitude, and the discretized velocity values at each node are used as inputs.
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CFD data generation

Training 

Data

Test Data

Interpolation Extrapolation

0.05m/s, 

0.1m/s, 

0.2m/s

0.15m/s 0.3m/s

❖ Table 2. Training and Test Data condition
Initial flow field

❖ Table 3. Solver setting
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AutoEncoder – Geometry1 AutoEncoder – Geometry2 DeepONet – Geometry1 DeepONet – Geometry2
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≫ AutoEncoder shows similar training loss for both geometries.

≫ In the case of DeepONet, the training loss decreases well for both geometries, and it records even lower mean squared error (MSE) loss, 

especially in Geometry 2.

Loss graph

Preliminary evaluation for the application of L-DeepONet
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≫ In the case of the evaluation condition at 0.15 m/s, the model fails to accurately predict the flow field.

≫ In 0.3 m/s, the predicted flow initially shows similar patterns, but discrepancies become apparent as time progresses.

≫ Overall, the model appears to have struggled in learning the flow characteristics for the Geometry 1 configuration.

Geometry1 Results



Geometry2 – 0.15m/s Geometry2 – 0.3m/s
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≫ Under all evaluation scenarios, the model demonstrates a good ability to reproduce the overall flow pattern.

≫ Although the Kármán vortex street is not clearly observed before 50 time steps, the predicted flow closely resembles the reference solution 

thereafter.

Geometry2 Results
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≫ In addition, the velocity distribution over time was quantitatively examined at nodes located at the center of the geometry and at positions 

50 mm to the left and right. 

≫ Same with the previous results, the prediction at 0.15 m/s shows significant deviation from the actual velocity, while at 0.3 m/s, the 

predicted flow generally resembles the ground truth but still exhibits some discrepancies.

Geometry1 Results

Geometry1 – 0.15m/s Geometry1 – 0.3m/s
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▪ In Geometry 2, the model successfully captured the overall flow behavior under both evaluation conditions. 

▪ Although it did not accurately predict the magnitude of the velocity, the periodic flow pattern of the Kármán vortex was observed at all three 

nodes. 

Geometry2 Results
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≫ These results showed that satisfactory prediction performance can be achieved even with a limited amount of training data in complex 

geometries. 

≫ To extend L-DeepONet as a surrogate model for CFD simulations, additional data were generated under the same conditions and used to 

further train the model. 

→ A total of 50 datasets were generated by varying the initial velocity from 0.01 m/s to 0.5 m/s. 

→ Of these, 40 were used as training data and 10 as validation data for training the L-DeepONet model. 
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Expansion to CFD acceleration model

AutoEncoder Loss DeepONet Loss

❖Loss graph ❖Training and Test Data condition

Training Data 40 samples (0.01~0.5 m/s)

Validation Data 10 test samples (excluded 

from training)

Test Data
Interpolation 0.4m/s

Extrapolation 0.6m/s



≫ Unlike the previous results, the Kármán vortex in the cylinder wake is captured to some extent but gradually fades over time.

≫ However, the overall flow pattern is well predicted, and the mean velocity field is accurately represented.

Results

Geometry2 -0.6m/s Velocity distribution – 0.6m/s
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Results when I.C 0.6m/s
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≫ As with the extrapolation results, the model shows good prediction of the overall flow.

≫ It briefly captures the periodic Kármán vortex pattern along the main flow, but the prediction quickly converges to 

the mean distribution.

Results when I.C 0.4m/s
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④ Conclusion



≫ Why did Geometry 2 exhibit better performance despite having a more complex shape than Geometry 1?

→ Because the training data samples in Geometry 2 are more similar to each other.

≫ Why did the representation of the Kármán vortex deteriorate despite the increase in training data?

→ Because of spectral bias, the autoencoder struggles to learn high-frequency features at local regions.

→ However, it can effectively learn the overall structure of the data.

→ Since DeepONet learned the flow field primarily based on the low-frequency components compressed by the autoencoder, it was 

able to accurately predict the macroscopic flow pattern rather than the strong periodicity of the Kármán vortex.
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Results Analysis

✓ Spectral Bias

It refers to the tendency of neural networks to learn low-frequency features first and high-frequency features later.



≫ The L-DeepONet model was applied to the geometry of a Helical Coil Steam Generator, and despite being trained on a limited dataset, it 

successfully accelerated CFD simulations even for some complex configurations.

≫ As the training data increased, high-frequency features were smoothed out as expected, leading to a diminished representation of the 

Kármán vortex, although further performance improvement remains necessary.

≫ Future work will focus on extending the tailored surrogate model for SMR applications by incorporating a variety of geometries and 

boundary conditions like Geometry1 and under figures.
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Conclusion and Future work

𝑇 ƴ, 𝑞ƴ

Core 𝑄, 𝝓Primary flow 𝑈, 𝑃, 𝑇Secondary flow 𝑯, 𝑷

𝑇

𝑇, 𝑄𝑇 ƴ, 𝑞ƴ

Figure from Yonggyun Yu (KAERI)

❖ Inference Time

- CFD simulations : 30 minutes for each initial condition

- L-DeepONet : 4s 
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L-DeepONet architecture and hyperparameter to learn 3 data

❖ AutoEncoder(81 dimension)

• Epoch : 10000

• Batch size : 90

• Learning weight : Adam(10e-03)

• Activation function : ReLU

• Take 1 hour to learn

❖ DeepONet

• Epoch : 90000

• Batch size : 3

• Learning weight : Adam(10e-04)

• Activation function : Sin

• Take 5 minuites to learn

❖Hyperparameters of L-DeepONet ❖AutoEncoder architecture ❖DeepONet architecture
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L-DeepONet architecture and hyperparameter to learn 50 data

❖ AutoEncoder(256 dimension)

• Epoch : 10000

• Batch size : 64

• Learning weight : Adamw(10e-05)

• Activation function : ReLU

• Take 5 hours to learn

❖ DeepONet

• Epoch : 90000

• Batch size : 10

• Learning weight : Adam(10e-04)

• Activation function : ReLU

• Take 15 minuites to learn

❖Hyperparameters of L-DeepONet ❖AutoEncoder architecture ❖DeepONet architecture
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≫ For performance comparison, a standard DeepONet was also trained on the same dataset using the Geometry 1 configuration.0.3m/s

≫ Under the 0.3 m/s condition, while the overall flow pattern appeared similar, there was a significant discrepancy in velocity magnitude. 

≫ The predicted flow field showed similar patterns but underestimated the velocity magnitude.

Orginal DeepONet results
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