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1. Introduction 
 

In reactor analysis, the Monte Carlo (MC) method is 
widely recognized as one of the most accurate and 
realistic simulation techniques, particularly because it 
effectively models continuous-energy cross sections and 
complex geometries with minimal assumptions. Given 
its stochastic nature, the MC method yields both mean 
values and their associated uncertainties—an inclusion 
that is essential for a meaningful interpretation of the 
simulation results. 

For steady-state (eigenvalue) Monte Carlo simulations, 
neutron behavior is modeled stochastically by updating 
the fission source distribution (FSD) through successive 
cycle by cycle iterations, and employs a normalization 
method that scales with the fission source count [1]. Due 
to the intercycle correlations inherent in the FSDs, the 
estimates obtained for a tally from individual cycles 
become interdependent, which in turn biases the sample 
standard deviation (SD) calculated for the tally’s mean 
value [2]. 

Several methods have been proposed to quantify the 
variance bias—that is, the discrepancy between the true 
variance and the sample variance of the tally mean [3-6]. 
Notably, the history-based batch method (HBM) [7] has 
demonstrated considerable success and has been recently 
adapted for Dynamic Monte Carlo simulations in 
transient calculations [8]. 

Recently, the history-based batch method was 
integrated into the iMC code developed at the Korea 
Advanced Institute of Science and Technology (KAIST) 
[9-10]. This paper provides a concise overview of the 
method, details its implementation within the iMC 
framework, and presents preliminary results that 
highlight its effectiveness in enhancing uncertainty 
estimation. 

 
2. History-based Batch Method 

 
Consider a Monte Carlo eigenvalue simulation with N 

active cycles, each comprising M neutron histories. Let 
Qij represent the tally Q estimate obtained from the j’th 
neutron history in the i’th cycle. The mean value of Q 
and its sample variance are computed as follows: 
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The real variance of the tally mean 𝑄𝑄�  is written as 
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where cov[𝑄𝑄𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖′𝑖𝑖′] denotes the covariance between 𝑄𝑄𝑖𝑖𝑖𝑖  
and 𝑄𝑄𝑖𝑖′𝑖𝑖′ and E [∙] is the estimate of variable within the 
brackets.  

The estimate of the sample variance is referred to as 
the apparent variance 𝜎𝜎𝐴𝐴2[𝑄𝑄�] = 𝐸𝐸�𝜎𝜎𝑆𝑆2[𝑄𝑄�]�, which always 
underestimates the real variance. The discrepancy 
between the two can be expressed as 
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Further details concerning the derivation of Eq. (4) can 
be found elsewhere [7]. 

The history-based batch method addresses this 
discrepancy by reinterpreting a Monte Carlo eigenvalue 
simulation with N active cycles and M histories per cycle 
as NB separate batch runs, each comprising N active 
cycles and M/NB histories per cycle. However, this 
straightforward re-partitioning does not guarantee 
preservation of the original tally mean 𝑄𝑄�  since the 
normalization of fission source weights is performed 
using M/NB histories per cycle rather than the full M. 
Note that the weight of fission sources for cycle i in the 
conventional MC run is calculated as 
 

 𝑤𝑤𝑖𝑖 = 𝑁𝑁 𝑁𝑁𝑖𝑖⁄  , (5) 
 
where Mi is the number of fission sources generated from 
the previous (i-1)’th cycle. 

To exploit the multiple-run strategy for enhancing 
sample independence while maintaining the original tally 
mean value, the history-based batch method with weight 
correction organizes batches by grouping histories that 
share common ancestors. To compute each batch tally Qk 
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(k = 1, 2, …, NB) that remain intact from the 
normalization dependency, we introduce a weight 
correction factor, 𝑓𝑓𝑖𝑖𝑘𝑘, for each batch.  
 

 𝑓𝑓𝑖𝑖𝑘𝑘 =
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where 𝑤𝑤𝑖𝑖𝑘𝑘 and 𝑁𝑁𝑖𝑖

𝑘𝑘 denotes source weight and number for 
k’th history batch in the i’th cycle respectively. Note that 
𝑤𝑤𝑖𝑖𝑘𝑘 is defined as 
 

 𝑤𝑤𝑖𝑖𝑘𝑘 = (𝑁𝑁 𝑁𝑁𝐵𝐵⁄ ) 𝑁𝑁𝑖𝑖
𝑘𝑘⁄  , (7) 

 
which resembles Eq. (5). 

The weight correction factor adjusts the source weight 
for each batch based on a batch size of M/NB during the 
tallying of Qk, where the batch size denotes the number 
of histories assigned to each batch. Notably, the original 
transport process remains unaltered; only the particle 
weights used in the tallying of Qk are modified by 𝑓𝑓𝑖𝑖𝑘𝑘.  

Then, the obtained batch tally can be expressed as 
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and its mean and sample variance can be obtained as 
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In summary, the 𝑄𝑄�𝐻𝐻𝐵𝐵 obtained using the history-based 

batch method is unaffected by both genealogical and 
normalization effects, and its variance, 𝜎𝜎2[𝑄𝑄�𝐻𝐻𝐵𝐵], serves 
as a close approximation of the true variance, 𝜎𝜎2[𝑄𝑄�]. 
Additional details on the history-based batch method are 
provided in Ref. 7. 

 
3. Numerical Results 

 
The history-based batch method for enhanced variance 

estimation has been integrated into the iMC code. During 
its implementation, significant fluctuations in batch sizes 
were observed as cycles progressed, with some batches 
even receiving no source allocations. To address this 
issue, the number of fission banks, n, stored during the 
Monte Carlo run was adjusted as follows: 
 

 𝑛𝑛 = int �𝑤𝑤𝑖𝑖 ∙
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜈𝜈𝜎𝜎𝑒𝑒
𝜎𝜎𝑡𝑡

∙ 𝑓𝑓𝑖𝑖𝑘𝑘 + 𝜉𝜉� , (11) 

 
where keff is the multiplication factor, 𝜉𝜉 is the uniform 
random number, int[∙] is the integer operator, and the 

other notations are that of the convention. Excluding 𝑓𝑓𝑖𝑖𝑘𝑘 
from Eq. (11) reverts the simulation to a conventional 
MC run. The impact of incorporating this weight 
correction factor on determining the number of stored 
fission banks will be discussed. 

To evaluate the accuracy of the history-based batch 
method implemented in the iMC code, this study 
employs an expanded version of the C5G7 benchmark. 
Figure 1 illustrates the overall configuration of the 
problem, which utilizes the multi-group cross section 
data specified in the OECD/NEA C5G7 benchmark 
report [11]. 
 

 
Fig 1. Enlarged C5G7 benchmark layout. 

 
The MC run was executed using 500,000 histories per 

cycle, comprising 50 inactive cycles followed by 200 
active cycles. The pCMFD acceleration technique was 
applied during the inactive cycles to expedite fission 
source convergence [12]. The reference result, 
representing the true variance, was derived from 50 
independent batch runs. 

Figure 2 shows the calculated multiplication factor for 
different history-based batch sizes. The label “apparent” 
denotes the conventional tally mean and its associated 
apparent variance, i.e., Eq. (2), with HBM-related 
treatment being employed. The “history batch” refers to 
the mean and variance obtained from history-based 
batch-wise values. The blue lines indicate the mean and 
the real variance, along with a 2σ range, as determined 
from independent batch runs without any HBM-related 
treatment being employed. 

 

 
Fig 2. Calculated 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  values for different batch sizes. 
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It is important to note that when relatively few 
particles are allocated to each history batch, the 
conventional tally mean, 𝑄𝑄� , tends to be underestimated. 
This bias arises from the inclusion of the weight 
correction factor, 𝑓𝑓𝑖𝑖𝑘𝑘 , in Eq. (11) when estimating the 
number of stored fission banks. A similar trend is 
observed for the batch tally mean, 𝑄𝑄�𝐻𝐻𝐵𝐵 . These 
observations suggest that ensuring a sufficiently large 
number of particles per history batch is crucial for 
preserving the tally mean while achieving reliable 
variance estimation. Figure 3 illustrates 10 independent 
runs with a batch size of 5,000, where all trials yield 
acceptable tally means and improved variance estimates. 
Note that mean value obtained from Eq. (1) is portrayed 
in the cartoon. 

 

 
Fig 3. Independent MC runs with batch size of 5,000. 
 
The tallied power density distribution was also 

examined. Figures 4 and 5 display the mean distribution 
and its corresponding real variance, respectively. The 
power distribution along the red axis in Fig. 4 was 
evaluated for a history batch size of 5,000, as illustrated 
in Figs. 6 and 7. The results indicate that while the tally 
means are preserved, the uncertainty from the history-
based batch method closely approximates that of the 
reference. To assess the effect of varying batch sizes, the 
power density at the position with the highest value was 
compared, with Fig. 8 showing changes in the estimates 
similar to those observed in Fig. 2. 

 

 
Fig 4. Reference power density distribution (mean value). 

 
Fig 5. Reference power density distribution (uncertainty). 

 

 
Fig 6. Power density distribution along the red axis 
(mean value) with batch size of 5,000. 

 

 
Fig 7. Power density distribution along the red axis 
(uncertainty) with batch size of 5,000. 
 

Both the conventional tally mean, 𝑄𝑄� , and the batch 
tally mean, 𝑄𝑄�𝐻𝐻𝐵𝐵 , tend to decrease as the batch size 
decreases. To assess the normality of the batch-wise 
tallies, Qk, we performed a p-value test based on the 
D’Agostino-Pearson K² test [13]. Table 1 lists the 
calculated p-values for both the multiplication factor and 
the power density at the location with the highest value 
across various batch sizes. 
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Fig 8. Calculated power density value at the largest 
position for different batch size. 
 

Table 1. P-values for 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  and power density 
Batch size 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  Power density 

50,000 0.63  0.10  
20,000 0.52  0.72  
10,000 0.90  0.70  
5,000 0.44  0.84  
2,000 0.74  0.27  
1,000 0.95  0.20  
500 0.76  0.00  
250 0.03  0.00  
100 0.00  0.00  
50 0.00  0.00  

 
Analysis indicates that when using a small batch 

size—say, fewer than 1,000 for this run—the p-value 
drops below 0.05, which is the typical threshold for 
rejecting the null hypothesis. Although the variance 
obtained from the batch tallies, 𝜎𝜎2[𝑄𝑄�𝐻𝐻𝐵𝐵] , appears 
acceptable even with reduced batch sizes, it is important 
to note that the distribution deviates from normality. 
Using a larger batch size sometimes leads to a reduction 
in the p-value; however, this is not a concern since it 
always remains above the prescribed significance level 
of 0.05. In summary, selecting a sufficiently large batch 
size is essential for maintaining the tally mean and 
ensuring reliable uncertainty estimates in the history-
based batch method currently implemented in the iMC 
code. 

 
4. Conclusions 

 
In this work, the overall concept of the history-based 

batch method has been revisited, and its implementation 
in the iMC code is presented. Grouping source banks into 
batches initially resulted in significant fluctuations in the 
number of stored fission banks as the simulation cycles 
progressed. To address this issue, a weight correction 
factor was introduced during the determination of the 
fission bank count, which had led to bias in the tally 
mean when small batch sizes were employed. 

Nevertheless, analysis of the enlarged C5G7 
benchmark demonstrates the effectiveness of the 
implemented history-based batch method in improving 
the accuracy of uncertainty estimation. With a moderate 

batch size, the tally mean is maintained and the estimated 
uncertainty closely approximates the reference (real 
variance). Future research will explore the applicability 
of this method to fast spectrum reactors, along with 
further refinement of the algorithm to reliably preserve 
the tally mean. 
 

ACKNOWLEDGMENTS 
 
This research was supported by a Korea Energy 
Technology Evaluation and Planning (KETEP) grant 
funded by the Korean Government (MTIE) (RS-2024-
00439210). 
 

REFERENCES 
 

[1] J. LIEBROTH, ‘‘A Monte Carlo Technique to Solve the 
Static Eigenvalue Problem of the Boltzmann Transport 
Equation,’’ Nukleonik, 11, 213 (1968). 
[2] E. M. GELBARD and R. E. PRAEL, ‘‘Monte Carlo Work 
at Argonne National Laboratory,’’ ANL-75-2 (NEACRP-L 
118), p. 202, Argonne National Laboratory (1974). 
[3] E. M. GELBARD and R. PRAEL, ‘‘Computation of 
Standard Deviations in Eigenvalue Calculations,’’ Prog. Nucl. 
Energy, 24, 237 (1990). 
[4] T. UEKI, ‘‘Batch Estimation of Statistical Errors in the 
Monte Carlo Calculation of Local Powers,’’ Ann. Nucl. Energy, 
38, 2462 (2011). 
[5] H. J. SHIM and C. H. KIM, ‘‘Real Variance Estimation 
Using an Intercycle Fission Source Correlation for Monte Carlo 
Eigenvalue Calculations,’’ Nucl. Sci. Eng., 162, 98 (2009). 
[6] T. UEKI and B. R. NEASE, ‘‘Time Series Analysis of 
Monte Carlo Fission Sources—II: Confidence Interval 
Estimation,’’ Nucl. Sci. Eng., 153, 184 (2006). 
[7] H. J. SHIM, S. H. CHOI and C. H. KIM, “Real Variance 
Estimation by Grouping Histories in Monte Carlo Eigenvalue 
Calculations,” Nucl. Sci. Eng., 176:1, 58-68 (2014). 
[8] S. H. JANG and H. J. SHIM, “Advances for the time-
dependent Monte Carlo neutron transport analysis in McCARD” 
Nucl. Eng. Tech., 55: 2712-2722 (2023). 
[9] H. T. KIM (2022). “Study of steady-state and time-
dependent Monte Carlo neutron transport coupled multi-
physics reactor analysis in the imc code,”. PhD Thesis (Daejeon, 
South Korea: Department of Nuclear and Quantum 
Engineering). 
[10] T. OH, I. KIM, and Y. KIM, “Evaluation of effective 
kinetic parameters and adjoint flux distribution using iterated 
fission probability in the iMC Monte Carlo code,” Ann. Nucl. 
Energy, 210: 110878 (2025). 
[11] M. A. SMITH, E. E. LEWIS, B.-C. NA, “Benchmark on 
Deterministic Transport Calculations Without Spatial 
Homogenization: A 2-D/3-D MOX Fuel Assembly 3-D 
Benchmark,” NEA/NSC/DOC (2003). 
[12] N. Z. CHO, G. S. LEE, and C. J. PARK, “On a New 
Acceleration Method for 3D Whole-Core Transport 
Calculations,” Annual Meeting of the Atomic Energy Society 
of Japan (2003). 
[13] R. B. D’AGOSTINO, and E. S. PEARSON, "Tests for 
departure from normality." Biometrika, 60, 613–622 (1973). 


