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1. Introduction 

 
In the nuclear power plant domain, the safety of highly 

complex systems is crucial. To ensure operational 
reliability, probabilistic safety assessment (PSA) is 
widely employed to quantify and manage the risks 
associated with potential faults. Given the intricate 
interdependencies in such systems, traditional 
deterministic methods often fall short, making 
probabilistic approaches essential for accurate risk 
evaluation. 

A particularly powerful technique for fault analysis in 
complex systems is the Binary Decision Diagram (BDD) 
based method. BDDs provide a compact and canonical 
representation of Boolean functions, enabling efficient 
fault tree analysis and system reliability computations. 
They have been successfully applied in numerous safety-
critical applications due to their ability to simplify and 
analyze the combinatorial structure of failure modes. 

Despite the intuitive appeal of BDD-based methods, a 
significant challenge remains: the variable ordering 
problem. The size of a BDD, which directly impacts 
computational efficiency and memory usage, is highly 
sensitive to the order in which variables are arranged. 
Mathematically, if we denote the BDD size by 𝑆, and the 
variable ordering by 𝜋, then the objective is to minimize: 

 
min
గ
𝑆(𝜋) 

 
However, finding the optimal ordering is known to be 

NP-hard, which has motivated the use of heuristic 
methods for practical applications [1]. 

To address this challenge, heuristic-based approaches 
have been developed to quickly approximate good 
variable orderings without exhaustive search. In this 
paper, we propose a novel method that leverages the 
strengths of both quantum-inspired techniques and 
reinforcement learning (RL). The Quantum Enhanced 
RL Hybrid Optimizer is designed to achieve two key 
objectives: - Fast Calculation Speed: By incorporating 
quantum-inspired tunneling strategies, the optimizer can 
efficiently escape local minima, mimicking quantum 
superposition and interference. - BDD Size Optimization: 
Reinforcement learning is employed to iteratively 
improve the variable ordering, ensuring that the resulting 
BDD remains as compact as possible. 

The integration of these techniques offers a promising 
direction for overcoming the variable ordering problem 
in BDD-based fault analysis, potentially leading to more 
reliable and efficient safety assessments in nuclear power 
plants. 

 
2. Quantum Hybrid RL Optimizer for Variable 

Ordering 
 

The variable ordering problem is a central challenge 
when using Binary Decision Diagrams (BDDs) to 
represent Boolean functions. The size of a BDD, denoted 
as 𝑆(𝜋), is highly sensitive to the variable ordering 𝜋, 
and finding the optimal ordering is NP-hard: 

 
min
గ
𝑆(𝜋) 

  
2.1 Quantum-Inspired Exploration and Tunneling 

 
Quantum mechanics provides powerful concepts that 

can be harnessed to navigate complex search spaces. In 
our optimizer, we adopt two key quantum-inspired ideas: 
superposition (with interference) and tunneling. 

In quantum mechanics, a system exists in a 
superposition of states, allowing it to explore multiple 
configurations simultaneously. We mimic this behavior 
by generating a diverse set of candidate orderings from a 
base ordering 𝜋 . For example, elementary operations 
such as the swap operation, 

 
𝜋′ = swap(𝜋, 𝑖, 𝑗), 

 
and the reverse operation, 
 

𝜋′ = reverse(𝜋, 𝑖, 𝑙), 
 
are applied in parallel to create many candidates. 

When these candidate orderings are combined in a 
manner analogous to quantum interference, the resulting 
ordering can incorporate the most promising features 
from each candidate. This approach is essential because 
the vast search space of variable orderings often leads 
classical methods to converge slowly or get trapped in 
local minima. 

Complementing this, quantum tunneling enables a 
particle to traverse an energy barrier that it would not 
overcome by classical means. In our optimizer, tunneling 
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strategies provide nonlocal moves that help the algorithm 
escape local optima. Examples include grouping 
variables based on parity, 

 
𝜋′ = group_parity(𝜋), 

 
or by modulo operations, 
 

𝜋′ = group_mod(𝜋,𝑚), 
 
as well as performing rotations, 
 

𝜋′ = rotate(𝜋, 𝑘). 
 
Each tunneling strategy 𝑇௜  is assigned a weight 𝑤௜ , 

and the probability of selecting a particular strategy is 
given by 

 

𝑃(𝑇௜) =
𝑤௜

∑ 𝑤௝௝

. 

 
This nonlocal search capability is crucial for 

bypassing regions where only incremental changes are 
insufficient to reduce the BDD size, thus accelerating 
convergence toward a smaller BDD. 

 
 

2.2 Reinforcement Learning Framework 
 

To guide the search process more effectively, the 
optimizer incorporates reinforcement learning. Rather 
than considering the full variable ordering 𝜋—which is 
prohibitively large—we extract key features to form a 
compact state representation. For instance, the state 𝑠 
may include the first and last elements of the ordering, 
(𝜋ଵ, 𝜋௡), as well as a measure of the parity grouping 
quality 𝑞௣, defined as 

 

𝑞௣ = 1 −
span of even (or odd) indices

𝑛 − 1
, 

 
along with other grouping metrics such as 𝑞௠௢ௗଷ , 

𝑞௠௢ௗ , etc. In this way, the state is expressed as: 
 

𝑠 = ൫𝜋ଵ , 𝜋௡, 𝑞௣, 𝑞௠௢ௗ , 𝑞௠௢ௗସ, … ൯. 
 
The action space 𝒜  includes elementary 

transformations that adjust the ordering, such as: - Swap: 
𝑎 = swap(𝑖, 𝑗), - Move: 𝑎 = move(𝑖, 𝑗), - Reverse: 𝑎 =
reverse(𝑖, 𝑙), - and various pattern-based actions. 

After taking an action, the optimizer evaluates the 
change in the BDD size to compute an immediate reward 
𝑟, defined as: 

 

𝑟 = ቐ
𝜆 
𝑆(𝜋old) − 𝑆(𝜋new)

𝑆(𝜋old)
if 𝑆(𝜋new) < 𝑆(𝜋old)

−𝜇 otherwise
, 

 

where 𝜆  and 𝜇  are positive constants scaling the 
reward and penalty. 

The RL agent maintains a Q-table that estimates the 
quality of each state–action pair. The Q-learning update 
is performed according to: 

 
𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼൫𝑟 − 𝑄(𝑠, 𝑎)൯, 

 
with 𝛼  being the learning rate. Actions are selected 

using an epsilon-greedy policy: 
 

𝑎∗ = ቊ
a random action with probability 𝜖,
argmax

௔∈𝒜
𝑄(𝑠, 𝑎) with probability 1 − 𝜖. 

 
This framework enables the optimizer to adaptively 

favor actions that have historically led to significant 
reductions in BDD size, thereby improving search 
efficiency. 
 
2.3 Integration of Quantum-Inspired and RL Methods 

 
The final optimizer interleaves quantum-inspired 

exploration with RL-based exploitation in an adaptive, 
multi-phase framework: 

1. Exploration Phase: Candidate orderings are 
generated using quantum-inspired methods, 
effectively creating a superposition of solutions that 
enhances global search. 

2. Exploitation Phase: The RL agent applies 
actions with high expected rewards to fine-tune the 
ordering locally. 

3. Tunneling Phase: When local improvements 
stagnate, the optimizer employs tunneling strategies to 
perform nonlocal moves, allowing it to overcome local 
minima. 

4. Pattern-Based Phase: The algorithm utilizes 
learned grouping patterns (such as parity or modulo 
clustering) to propose new orderings that align with 
structures known to reduce BDD size. 
This integrated approach leverages the benefits of both 

global exploration (through quantum-inspired concepts) 
and local refinement (via reinforcement learning), 
resulting in a robust method for the variable ordering 
problem.  

In summary, the Quantum Enhanced RL Hybrid 
Optimizer directly addresses the variable ordering 
problem by combining nonlocal, quantum-inspired 
search methods with an adaptive RL framework. The 
mathematical foundations—from the objective function 

 
min
గ
𝑆(𝜋) 

 
to the Q-learning update rule, 
 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼൫𝑟 − 𝑄(𝑠, 𝑎)൯, 
 
This hybrid approach enables a rapid and robust search 

in the high-dimensional space of variable orderings. 
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3. Experiment 

 
3.1 Experimental Setup 

 
We compare the Quantum Hybrid Reinforcement 

Learning (QHRL) Optimizer against classical heuristic 
methods, including:  

1. Sifting Optimizer [1]: A local search algorithm 
that iteratively improves the ordering via 
systematic sifting.  

2. Simulated Annealing [2]: A probabilistic method 
that utilizes temperature-based acceptance 
criteria to avoid local minima.  

3. Quantum Enhanced RL Hybrid Optimizer: Our 
proposed method that integrates quantum-
inspired global search and RL-based local 
refinement. 

The experiments are conducted under controlled 
parameters such as a fixed time limit per run, number of 
repetitions (runs), and varying problem sizes. This 
controlled setup allows us to isolate the effects of the 
optimization strategies on performance. 

We utilize Deceptive Local Minima benchmark to 
simulate different characteristics of the variable ordering 
problem.  

• Deceptive Local Minima [3]: Designed to trap 
classical local search methods by presenting non-
intuitive optimal orderings. 
 

3.2 Results 
 
Convergence plots provide insights into how 

algorithms progress toward optimal solutions over time. 
Figures 1-4 (Quantum Hybrid Reinforcement Learning, 
Sifting, Simulated Annealing, Comparison of three 
algorithms) show the convergence behavior for the three 
algorithms on the Deceptive Local Minima benchmark 
with n = 64, a problem size that presents significant 
challenges for conventional optimization methods. It is 
worth noting that while we refer to 712 as the “ground 
truth” value, this was established through extensive 
optimization rather than exhaustive enumeration of all 
permutations (which would be computationally 
infeasible for n=64). 

 

Fig. 1. Deceptive Local Minima 64 – Enhanced QRL Hybrid 
 

 
Fig. 2. Deceptive Local Minima 64 – Sifting Algorithm 
 

 
Fig. 3. Deceptive Local Minima 64 – Simulated Annealing 
 

 
Fig. 4. Comparison of Three Algorithms 
 
 

1. Quantum Hybrid Reinforcement Learning 
(QHRL) demonstrates remarkably rapid convergence, 
reaching the ground truth value (712) almost 
instantaneously. This exceptional performance 
suggests that the quantum-inspired tunneling 
mechanism effectively bypasses the deceptive local 
minima that trap classical methods. 

2. Sifting Algorithm shows a much slower 
convergence pattern, requiring approximately 75-100 
seconds to approach its best solution. While it 
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eventually achieves reasonable BDD sizes (around 
640), it never reaches the ground truth value despite 
substantial computation time. 

3. Simulated Annealing exhibits the poorest 
performance, with its best run plateauing around 850, 
significantly higher than the ground truth. This 
indicates that the temperature-based escape 
mechanism is insufficient for the deceptive landscape 
of this benchmark. 

 
4. Conclusion 

 
This paper introduced the Quantum Hybrid 

Reinforcement Learning (QHRL) optimizer, a novel 
approach to the variable ordering problem in Binary 
Decision Diagrams. By integrating quantum-inspired 
tunneling strategies with reinforcement learning 
techniques, we created a method that effectively balances 
global exploration and local exploitation in the high-
dimensional space of variable orderings. 
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