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1. Introduction 

 
Severe accident (SA) analysis is essential for ensuring 

the safety of nuclear power plants, and system codes such 

as MELCOR have been widely used to simulate accident 
progression [1]. MELCOR models complex thermal-

hydraulic phenomena, including core degradation, 

coolant loss, and hydrogen combustion, using a control 

volume (CV)-based framework. Despite its effectiveness, 

MELCOR has several limitations. First, it requires 

complex nodalization, where users must manually define 

control volumes and flow paths (FLs), making model 

setup cumbersome and error prone. Second, MELCOR 

employs numerical solvers based on finite-difference 

methods, offering a computational cost that is relatively 

moderate compared to CFD. However, further 

advancements in computational efficiency are required 
to enhance its applicability for PSA analysis. Lastly, its 

multi-physics modeling capability remains restricted, 

often necessitating external coupling with other solvers 

to provide a comprehensive simulation. These 

limitations underscore the need for an alternative 

approach that simplifies input modeling, enhances 

computational efficiency, and improves multi-physics 

integration. 

In recent years, machine learning techniques have 

been explored to address the computational challenges 

associated with traditional numerical solvers [2]. While 
various studies have integrated data-driven models into 

system codes, these approaches rely heavily on empirical 

training data and often lack physical interpretability [3]. 

To overcome these shortcomings, physics-informed 

neural networks (PINNs) have emerged as a promising 

alternative by embedding governing equations directly 

into the training process [4]. Unlike traditional data-

driven approaches, PINNs do not require separate 

training data and instead leverage physical laws to obtain 

solutions, allowing them to be classified as a new form 

of numerical method. PINNs have demonstrated success 
in approximating solutions for partial differential 

equations (PDEs) in fields such as fluid dynamics [5] and 

heat transfer [6] by leveraging automatic differentiation 

to enforce physical constraints. However, their 

application to MELCOR remains largely unexplored, 

and their effectiveness in replicating system code 

behavior has not been systematically evaluated. 

This study investigates the feasibility of applying 

PINNs to MELCOR’s CVH/FL module, which governs 

mass and momentum conservation. A simplified gravity-

driven flow scenario is selected to evaluate PINN 
performance in predicting transient flow behavior. 

However, conventional PINNs face challenges when 

applied to MELCOR due to the strong interdependencies 

between control volumes and flow paths. To address this 

issue, enhanced architecture, the Node Assigned PINN 

(NA-PINN), is proposed. NA-PINN constructs 

independent neural networks for different system 

components and trains them simultaneously, avoiding 

interference between outputs of different scales while 

learning the physical interactions. This enables a more 

stable and precise representation of transient system 
behavior. 

 

2. Methods and Results 

 

2.1 Scenario Description 

 

The MELCOR code employs control volumes (CV) 

and flow paths (FL) to simulate thermal-hydraulic 

phenomena in severe accidents. This study considers a 

simplified gravity-driven draining scenario comprising 

six control volumes connected by one flow path, as 

illustrated in Fig 1. Initially, the upper control volume 
(CV01) is fully filled with water, while the lower volume 

(CV02) is empty. Both control volumes are open to the 

atmosphere, thereby neglecting pressure effects. Each 

control volume has a cross-sectional area of 50 m² and a 

height of 2 m, connected by a flow path with a diameter 

of 0.2 m and length of 0.1 m. Water flows from CV01 to 

CV06 driven solely by gravitational forces, and the 
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simulation continues until equilibrium in water levels is 

reached. 

 

 
Fig. 1. Nodalization for the scenario model 

 

2.2 Governing Equations 

 

The physical behavior of the described scenario can be 

represented by two fundamental conservation equations 

derived from the MELCOR CVH/FL module, governing 

mass and momentum conservation. 

The mass conservation equation describes the 

temporal evolution of water height within each control 

volume. The inflow and outflow velocities through the 

connected flow paths, along with relevant geometric 

parameters, determine the rate of change in water height 
over time. This equation is expressed as follows: 

 

𝐴𝑖𝜌𝑗,𝑚
𝑑 𝜕𝐻𝑖,𝑚

𝜕𝑡
= ∑ 𝜎𝑖𝑗𝛼𝑗,𝜙𝜌𝑗,𝑚

𝑑 𝑣𝑗,𝜙𝐹𝑗𝐴𝑗𝑗     (1) 

 

where 𝐻𝑖,𝑚 represents the water height within control 

volume 𝑖, and 𝐴𝑖 is the cross-sectional area of the control 

volume. 𝜌𝑗,𝑚
𝑑  denotes the density of the fluid within the 

flow path, which is assumed to be constant. Additionally, 

𝑣𝑗,𝜙 represents the velocity within flow path 𝑗. 

The momentum conservation equation governs 

velocity dynamics within the flow path, where temporal 

velocity changes are primarily driven by gravitational 

forces and opposed by frictional losses. The equation is 

formulated as follows: 

 

𝐿𝑗
𝜕𝑣𝑗,𝜙

𝜕𝑡
= 𝑔𝛥𝑧 −

1

2
𝐾𝑗,𝜙
∗ |𝑣𝑗,𝜙|𝑣𝑗,𝜙   (2) 

 

where 𝐿𝑗  represents the inertial length of the flow path 

𝑗, and 𝑣𝑗,𝜙 denotes the new velocity within the flow path. 

𝛥𝑧corresponds to the water height, while 𝐾𝑗,𝜙
∗  represents 

the net form and wall-loss coefficient. 

These conservation equations are implemented in 

MELCOR in a discrete form, whereas PINNs utilize the 
partial differential equations in their original form. 

 

2.3 Physics-Informed Neural Network (PINN) 

Formulation 

 

PINNs integrate governing equations directly into the 

neural network training process, ensuring that solutions 

remain physically consistent. Fig. 2 illustrates the PINN 

architecture used in this study. The model takes a one-

dimensional input corresponding to temporal input 𝑡 and 

produces outputs predicting a total of 11 PDEs. 

Additionally, a hard constraints approach is adopted to 

ensure that initial conditions are always satisfied [7], 

with no boundary conditions imposed in the present 

scenario. Algorithm 1 provides a schematic 

representation of the learning algorithm used for PINN 

training. 

 

 
Fig. 2. Architecture of the proposed PINN 

 

 
Algorithm. 1. PINN Training Procedure 

 

2.4 PINN Performance and Limitations 
 

To evaluate the effectiveness of PINNs in approximating 

the solution, the network predictions were compared to 

the reference values obtained from the governing 

equations. As shown in Fig. 3, PINN completely failed 

to capture the transient behavior of water height and 

velocity, producing results that deviated significantly 

from the expected solution. The velocity predictions 

remained nearly constant instead of reflecting the 

expected acceleration and deceleration due to gravity and 

flow resistance. Similarly, the predicted water heights in 

the control volumes failed to exhibit a physically 
meaningful redistribution, suggesting that the network 

was unable to learn the fundamental governing 

relationships. 
 

  
Fig. 3. Comparison of water height (left) and velocity (right) 

 

Fig. 4 further illustrates the training loss history, which 

reveals persistent instability throughout the learning 

process. Unlike well-converging models where the loss 

decreases smoothly, PINN training exhibited 

fluctuations and stagnation, indicating difficulties in 

minimizing the residuals of the governing equations. 
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This behavior suggests that the network was unable to 

balance the competing constraints imposed by mass and 

momentum conservation, leading to unphysical and 

inconsistent predictions. 

 

 
Fig. 4. Training loss histories in the proposed PINN.  

 

The fundamental issue arises from the fact that a single 

neural network is tasked with predicting multiple 

coupled variables governed by separate partial 

differential equations (PDEs). In this system, water 

height in each control volume is strongly coupled with 

velocity in the flow path, and these relationships evolve 

dynamically over time. A single network struggles to 

simultaneously approximate the solution for all 

dependent variables while maintaining numerical 
consistency across equations. As a result, the network 

fails to enforce mass and momentum conservation 

effectively, leading to solutions that do not satisfy the 

expected physical behavior. This limitation suggests that 

a revised approach is necessary, one that decouples the 

learning process for different governing equations while 

preserving their interdependencies. 

 

2.5 Node-Assigned PINNs (NA-PINN) Approach 

 

To address the limitations of conventional PINNs, a 
modified framework, referred to as the node-assigned 

PINN (NA-PINN), is introduced. Instead of using a 

single neural network to approximate all state variables 

simultaneously, NA-PINN assigns separate neural 

networks to different components of the system, 

specifically control volumes and flow paths. Each 

network is responsible for learning a single state variable 

while maintaining consistency with the governing 

equations. This multi-PINN approach has also been 

shown in previous studies to achieve high accuracy [8]. 

Figure 5 illustrates the structure of NA-PINN, which 

consists of a one-dimensional input for temporal input 𝑡  
and 11 PDEs, with each neural network responsible for a 

single output. A single loss function was constructed to 

train all outputs simultaneously. Also, a hard constraints 

method was introduced to enforce the initial conditions. 

 

 

 
Fig. 5. Architecture of the Node-assigned PINN (NA-

PINN) 
 

 

2.6 NA-PINN Performance Evaluation 

 

The performance of NA-PINN was assessed by 

comparing its predictions against the solution values. Fig. 

6 presents the results, showing that NAPINN 

significantly improves the accuracy of both water height 

and velocity predictions. Unlike the conventional PINN, 
which produced physically inconsistent results, NA-

PINN effectively captures the transient flow behavior 

and closely follows the expected solution. To the best of 

our knowledge, this is the first study confirming the 

potential of a PINN for severe accident analysis.  

 

  
Fig. 6. Comparison of water height (left) and velocity (right) 

 
The quantitative improvements achieved by NAPINN 

are summarized in Table 1, where MAE and MSE values 

demonstrate a reduction of more than two orders of 

magnitude compared to the standard PINN approach. 

These results confirm that the separation of learning 

tasks allows NA-PINN to overcome the primary 

limitations of conventional PINNs. 

 

Table I: Problem Description 

Architecture PINN NA-PINN 

MAE (H) 1.678132 0.006960 

MSE (H) 1.640074 2.452554e-05 

MAE (V) 4.425523 0.024328 

MSE (V) 13.065767 3.906309e-04 

Parameters 1,226,923 1,275,659 

 

Fig. 7 shows the training loss history of NA-PINN 
compared to the conventional PINN. Unlike the 

fluctuating and unstable loss trajectory observed in the 

conventional approach, NA-PINN exhibits smooth and 

consistent convergence. This stability is attributed to the 

independent networks focusing on individual PDE 

constraints, allowing each equation to be learned 

effectively without conflicting influences from other 

variables. 
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Fig. 7. Training loss histories of the NA-PINN 

 

Overall, the NA-PINN framework addresses the 

fundamental challenges faced by standard PINNs in 

modeling coupled PDE systems. By leveraging a multi-

network structure, NA-PINN achieves improved 

predictive accuracy and numerical stability, making it a 

promising approach for approximating MELCOR-based 

severe accident simulations. 

 
3. Conclusions 

 

This study evaluated the feasibility of applying PINNs 

to MELCOR’s CVH/FL module which governs mass 

and momentum conservation. The results demonstrated 

that conventional PINNs exhibited unstable training 

behavior and physically inconsistent predictions due to 

the strong interdependencies among system variables. To 

address these limitations, this study proposed the Node-

Assigned PINN (NA-PINN) framework, where separate 

neural networks were assigned to control volumes and 
flow paths. This structure enabled each network to learn 

independently while maintaining physical interactions 

within the system. 

The analysis revealed that NA-PINN significantly 

improved the accuracy of water height and velocity 

predictions compared to conventional PINNs. The model 

exhibited stable convergence, and the error metrics were 

reduced by more than two orders of magnitude. These 

findings suggest that NA-PINN effectively overcomes 

the fundamental limitations of traditional PINNs, 

presenting a promising alternative for MELCOR-based 

severe accident simulations. By integrating physics-
based constraints into the neural network architecture, 

NA-PINN provides a more reliable and computationally 

efficient approach to solving coupled partial differential 

equation systems. 

However, this study has several limitations. First, the 

simplified gravity-driven draining scenario used in the 

analysis does not fully capture the complex multi-

physics interactions that occur in real severe accident 

conditions. Second, while NA-PINN demonstrated 

enhanced numerical stability, further research is required 

to assess its applicability to large-scale simulations 
involving multiple interacting physical phenomena. 

Future research should focus on applying NA-PINN to 

more complex MELCOR simulations, incorporating 

additional physical processes such as heat transfer and 

chemical reactions. Although the number of nodes may 

increase to several hundred, computational efficiency 

can be enhanced through a batched-network architecture. 

Furthermore, continued optimization of the network 

architecture and training methodology is necessary to 

further improve performance. 

In conclusion, this study presents a novel application 

of machine learning techniques in severe accident 

analysis, demonstrating the feasibility of PINN-based 

approaches in nuclear system simulations. To the best of 
our knowledge, this is the first study confirming the 

potential of a data-free PINN for severe accident analysis. 

In particular, NA-PINN serves as a viable alternative to 

conventional methods, with potential applications in 

various areas of nuclear safety analysis. 
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