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1. Introduction 
 

Due to the stochastic nature of the Monte Carlo (MC) 
method, a large number of particles must be simulated 
to achieve accurate results. Furthermore, the inclusion 
of depletion and multi-physics calculations imposes 
additional demands on memory and execution time. To 
address the computational intensity of the MC method, 
it is essential to incorporate parallel programming 
capabilities into the MC code. Two widely used parallel 
programming models for this purpose are the Message 
Passing Interface (MPI) and OpenMP. MPI is a 
distributed memory model that facilitates 
communication between processes running on multiple 
nodes, making it well-suited for high-performance 
computing (HPC) applications across clusters. On the 
other hand, OpenMP is a shared-memory model that 
simplifies parallel programming within a single multi-
core processor or node by enabling threads to access 
shared memory in a controlled manner. While MPI 
excels in scalability and flexibility for distributed 
systems, OpenMP provides ease of use and efficiency 
for parallelizing tasks on a single machine. 

In the context of GPU programming, computations 
are executed on the GPU, making MPI more suitable 
than OpenMP for enabling multi-GPU implementations. 
To meet the goal of reducing simulation time, multi-
node, multi-GPU capabilities have been integrated into 
GREAPMC (Gpu-optimized REActor Physics Monte 
Carlo), an in-house code developed at UNIST [1]. This 
paper outlines the methodology employed to enable 
parallel processing in GREAPMC. 

 
2. Methodology 

 
Multi-GPU capability can be implemented in three 

distinct ways. 
1. Regular MPI 
2. CUDA-aware MPI 
3. NVIDIA Collective Communications Library 

(NCCL) 
In this work, CUDA-aware MPI has been integrated, 
with plans to incorporate NCCL in the near future. 
The distinction between regular MPI and CUDA-
aware MPI is thoroughly discussed in [2], but a brief 
overview is provided here. In regular MPI, MPI 
functions are limited to accepting pointers to host 
(CPU) memory. When working in an MPI+CUDA 
environment, this necessitates staging GPU buffers 
through host memory, which requires additional 
cudaMemcpy operations. This extra memory copying 

can potentially hinder performance in multi-GPU 
setups. In contrast, CUDA-aware MPI allows GPU 
buffers to be passed directly to MPI functions. The 
data flow in CUDA-aware MPI is shown in Fig. 1. 
Pinned memory scheme is used to stage data between 
GPU and network buffers. Pinned (page-locked) host 
memory enables efficient PCIe and RDMA transfers 
by allowing direct memory access, which is essential 
for high-throughput GPU communication in CUDA-
aware MPI. 

 
 

Fig. 1. Flow of data in CUDA-aware MPI. 
 

The geometrical and material data are copied to each 
MPI rank. The particle data is uniformly distributed 
among the MPI ranks after assigning a unique seed to 
each particle. Following each cycle, the ranks must 
communicate to synchronize fission sites, tally statistics, 
and accumulate keff estimators. To ensure efficient MPI 
implementation in GREAPMC, minimizing 
communication overhead is critical. Therefore, the 
Nearest Neighbors Algorithm developed by Romano et 
al. [3] has been integrated to support multi-GPU 
capability in GREAPMC. In this algorithm, each rank 
communicates only with the adjacent ranks. Each rank 
accumulates the fission sites stochastically which are 
sampled after the cycle end and redistributed to make 
the number of source sites equal to the initial number of 
histories. This results in a uniform distribution of source 
sites with minimal communication overhead. For GPU 
kernel execution, each CUDA block was configured 
with 256 threads. This value was empirically selected 
based on performance benchmarking to optimize 
occupancy and memory throughput on GPU side. 
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3. Results and Discussion 
 

This section presents the MPI speed-up attained by 
GREAPMC for the OPR-1000 core [4]. Since MPI 
implementation is only directed towards the 
acceleration of the code using multiple nodes, the 
effective multiplication, flux tally, and fission reaction 
rates essentially remain conserved. GREAPMC uses 
double precision for critical calculations such as delta-
tracking (DTS) and tally accumulation to maintain 
numerical accuracy. Therefore, no degradation in 
calculation accuracy was observed due to the use of 
GPU computation. Core lab at UNIST has a GPU 
cluster with three nodes and each node has eight GPUs 
making the total number of GPUs equal to twenty-four. 
The specifications of the nodes are given in Table I. The 
node-01 (N1) is a heterogeneous node employing two 
RTX 3090 with a higher clock speed, more CUDA 
cores, and a higher SM (Streaming Multiprocessor) 
count than RTX A5000. 

  
Table I: Node Specifications. 

Node Specification 

N1 
2 × NVIDIA GeForce RTX 3090  

+  
6 × NVIDIA RTX A5000 

N2 & N3 8 × NVIDIA RTX A5000 
 

The performance, in the form of MPI speedup, of 
CUDA-aware MPI is computed using the Eq. (1). 

Time for  GPUs
MPI Speedup = 100

Time for one GPU

n
×  (1) 

This section details the performance evaluation 
beginning with single-node results. The single-node 
simulations presented here are conducted using Node 1 
(the mixed configuration) and Node 2 (eight RTX 
A5000s). Following the single-node analysis, multi-
node, multi-GPU results are presented to assess the 
code's scalability as the number of simulated particles 
per cycle increases. This multi-node analysis examines 
how effectively the code utilizes the combined 
resources of multiple nodes and GPUs to handle larger 
simulations. 

 
3.4 Single-Node, Multi-GPU 

Table II presents the MPI speedup comparison using a 
single node (node 2) with multiple GPUs for two 
scenarios: ten million particles per cycle and fourteen 
million particles per cycle. These simulations were 
performed using the OPR-1000 problem.Fig. 2 
illustrates these trends, where the ideal case has a slope 
of one. The scalability of simulations with more 
particles per cycle exhibit closer proximity to ideal 
scaling behavior as the MPI rank count is augmented, in 
contrast to simulations with fewer particles per cycle. 

 
 
 

Table II: MPI Speedup on node 2. 
Number of 

GPUs 
MPI Speedup 

10 million 14 million 
1 1.00 1.00 
2 1.98 1.98 
3 2.94 2.96 
4 3.89 3.92 
5 4.81 4.87 
6 5.74 5.81 
7 6.62 6.75 
8 7.50 7.64 

 
As shown in the table, increasing the number of 

particles per cycle improves the MPI speedup. Fig 2. 
illustrates these trends, where the ideal case has a slope 
of one. The scalability of simulations with a greater 
number of particles per cycle exhibits closer proximity 
to ideal scaling behavior as the MPI rank count is 
augmented, in contrast to simulations with a lower 
number of particles per cycle. 

 

 
Fig. 2. Speedup against the number of GPUs. 

 
Table III outlines the MPI speedup for the same 

simulations on Node 1. A comparison of Table III with 
Table II reveals superior performance from node 1. The 
performance enhancement can be attributed to the 
presence of two high performant RTX 3090 GPU cards 
on node 1. 

 
Table III: MPI Speedup on node 1. 

Number of 
GPUs 

MPI Speedup 
10 million 14 million 

1 1.00 1.00 
2 1.97 2.00 
3 2.95 2.99 
4 3.89 3.95 
5 4.87 4.96 
6 5.73 5.88 
7 6.73 6.85 
8 7.55 7.82 

 
Fig 3. illustrates the achieved MPI speedup. The MPI 

speedup gap between ten million particles per cycle and 
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fourteen million particles per cycle has increased here 
compared to simulations on node 2. 

 

 
Fig. 3. MPI speedup for simulations on node 1 of the GPU cluster. 

3.5 Multi-Node, Multi-GPU 
Fig.4 illustrates the MPI speedup achieved when scaling 
the simulation from 1 GPU to 24 GPUs across 3 nodes 
(24 GPU cards). The dashed line represents ideal linear 
scaling, meaning the speedup would equal the number 
of GPUs if there were no overhead. Both the 10M and 
14M particle curves closely follow a linear trend, 
though they fall slightly below the ideal due to 
communication overhead and other inefficiencies. 
Notably, the 14M curve remains nearer to the ideal line 
as the GPU count increases, indicating that a larger 
number of particles per cycle helps to better offset the 
communication costs. In simple terms, higher particle 
counts lead to more efficient use of the GPUs, yielding 
performance that more closely approximates ideal 
scaling. 

 
Fig. 4. The plot of extended scaling performance in 3 GPU 

nodes (total of 24 GPUs) 
 
3.6 Multi-Node, Multi-GPU 

In this configuration, the OPR1000 core was run 
using all three nodes on the GPU cluster (containing 24 
GPUs). The particles per cycle varied from 24 million 
to 240 million. The tracking rates are computed and 
plotted using the active cycle’s average execution time. 
Table IV gives tracking rates in million neutrons per 
second using all 24 GPUs. 

 
Table IV: Tracking rate in multi-node, multi-GPU setting. 

Particle per cycle 
(million) 

Tracking rate (Mn/s) 

24 15.635 
30 15.775 
36 15.987 
42 16.156 
50 16.32 
70 16.487 
90 16.592 
100 16.623 
120 16.631 
140 16.662 
160 16.698 
180 16.705 
200 16.745 
240 16.923 

 
From Fig. 5, GPUs demonstrate superior performance 

when processing a larger number of particles. For 
instance, in the 24 million particle simulation, each 
GPU handles one million particles, while in the 240 
million particle simulation, each GPU processes ten 
million particles. Further increasing the particle count is 
expected to enhance the tracking rate further, as 
evidenced by the upward trend in the plot beyond the 
200 million particle mark. This observation aligns with 
the previously discussed improved parallel efficiency 
for higher particle counts per cycle, collectively 
indicating excellent scalability for the number of 
particles. 

 

 
Fig. 5. The plot of tracking rate as the number of particles per 

cycle increases. 
 

4. Conclusions 
 

This work demonstrates the successful 
implementation of CUDA-aware MPI in GREAPMC, 
enabling efficient multi-node, multi-GPU capabilities to 
accelerate neutron transport calculations. By leveraging 
CUDA-aware MPI, the code minimizes data transfer 
overhead and simplifies GPU buffer management, 
achieving near-ideal scaling behavior as the number of 
simulated particles per cycle increases. Multi-node 
scalability tests underscored the code’s ability to 
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efficiently utilize 24 GPUs across three nodes, with 
tracking rates improving significantly for larger particle 
counts. The observed trends highlight the importance of 
balancing computational load and communication 
overhead, particularly when scaling to distributed 
systems. Future work will focus on adding depletion 
capability to GREAPMC. 
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