Cross-Section Based Yield Comparison of ⁶⁷Cu Production from Enriched ^{68,70}Zinc Targets

M.H. Jung^a, H.M. Jang^a, J.K. Park^a, S.C. Yang^b, W.J. Cho^{a*},

^aParticle Beam Research Division, Korea Atomic Energy Research Institute, Gyeongju, 38180, Republic of Korea ^aNuclear Data Center, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea

*Corresponding author: wonje59@kaeri.re.kr

*Keywords: Copper-67, Zinc-68, Zinc-70, High energy Proton, Nuclear reaction cross section

1. Introduction

Copper-67 (⁶⁷Cu) is a key theranostic radionuclide with applications in imaging and targeted radiotherapy [1]. Its production relies on proton-induced nuclear reactions, primarily using enriched zinc targets. The most studied reaction pathway is 68 Zn(p,2p) 67 Cu [2, 3], which provides high yields at moderate proton energies. Alternatively, 70 Zn(p,x) 67 Cu [4, 5] has been investigated as a secondary route, though its cross-section and efficiency remain less established.

Accurate cross-section measurements are essential for optimizing ⁶⁷Cu production, ensuring high yields while minimizing impurities. Previous studies have independently examined ⁶⁸Zn and ⁷⁰Zn targets [3, 5], but a direct comparison is necessary to assess their relative advantages. This study compiles experimental data from separate measurements of ⁶⁷Cu production via these two isotopes, providing a systematic analysis of their cross-section trends. The findings will aid in refining target selection and irradiation conditions, supporting the development of efficient ⁶⁷Cu production methods for medical applications.

2. Data Sources and Analysis Methods

This study is based on previously published crosssection measurements for the ${}^{68}Zn(p,2p){}^{67}Cu$ and ${}^{70}Zn(p,x){}^{67}Cu$ reactions. The cross-section data were obtained from two independent experimental studies, where enriched zinc targets were irradiated with proton beams and the resulting activation was analyzed via gamma-ray spectrometry.

To ensure consistency, all data were normalized and cross-compared over the full energy range up to 100 MeV. The measured excitation functions were analyzed to determine the optimal energy regions for ⁶⁷Cu production. Additionally, reaction yield calculations were performed based on the cross-section data and isotope decay parameters. The obtained production efficiencies were further evaluated in the context of enriched zinc target costs to assess the cost-effectiveness of each reaction route.

The details of the original experimental procedures, including target preparation, proton irradiation conditions, and gamma-ray spectrometry, can be found in the original publications [3, 5].

3. Cross-Section Data Comparison and Yield Estimation

The cross-section data for the 68 Zn(p,2p) 67 Cu and 70 Zn(p,x) 67 Cu reactions were obtained from previously published studies [3] [5]. Figure 1 shows the measured excitation functions for each reaction.

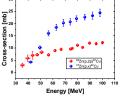


Figure 1. Measured excitation functions for ${}^{68}Zn(p,2p){}^{67}Cu$ and ${}^{70}Zn(p,x){}^{67}Cu$ reactions

The results indicate that the peak cross-section for ${}^{68}\text{Zn}(p,2p){}^{67}\text{Cu}$ occurs at 100 MeV with a maximum value of 12.21 ± 0.55 mb, while ${}^{70}\text{Zn}(p,x){}^{67}\text{Cu}$ reaches its highest value of 24.38 ± 1.52 mb at the same energy, nearly twice that of the ${}^{68}\text{Zn}$ reaction. These findings extend the available nuclear data beyond the previously reported 70 MeV limit, providing critical new insights into high-energy production pathways.

Based on these cross-section data, the estimated production yield for ⁶⁷Cu was calculated using the Radionuclide Yield Calculator (RYC) [6], a computational tool for predicting radionuclide production under specific irradiation conditions. Figure 2 presents the calculated yields of radionuclides using RYC.

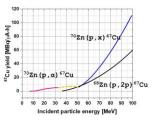


Figure 2. Calculated yields of ⁶⁷Cu were obtained using RYC

The analysis confirms that 70 Zn is the superior choice in the high-energy region (>60 MeV), while 68 Zn remains effective in the 40–60 MeV range.

4. Comparison and Discussio

The 68 Zn(p,2p) 67 Cu reaction is a well-established and widely used production route for 67 Cu, particularly in the moderate proton energy range of 40–100 MeV. Below 30 MeV, the 70 Zn(p, α) 67 Cu reaction has been employed (Kastleiner, 1999 #216), but its cross-section at higher energies remained largely unreported until recent studies. The work by G. Pupillo's group extended 70 Zn(p,x) 67 Cu cross-section data up to 70 MeV (Pupillo, #196), while this study further expands it to 100 MeV (Jung, 2025 #289), revealing a significant advantage of the 70 Zn target in the high-energy region.

A critical factor in evaluating production efficiency is the generation of impurities, particularly ⁶⁴Cu. Although ⁶⁴Cu is a different isotope from ⁶⁷Cu, it exhibits identical chemical properties as copper, making chemical separation ineffective. This presents a challenge in obtaining high-purity ⁶⁷Cu for medical applications. Figure 3 illustrates the production yield of ⁶⁴Cu as a function of proton energy.

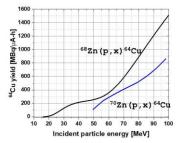


Figure 3. Calculated yields of ⁶⁴Cu were obtained using RYC

As shown in Figures 2 and 3, the 70 Zn(p,x) 67 Cu reaction not only provides approximately twice the yield of 67 Cu compared to 68 Zn(p,2p) 67 Cu but also produces significantly lower amounts of 64 Cu. This further enhances the practical advantage of using 70 Zn as a target material.

Since ⁶⁴Cu cannot be chemically separated from ⁶⁷Cu, an alternative purification strategy involves utilizing their different half-lives. ⁶⁴Cu has a half-life of 12.7 hours, whereas ⁶⁷Cu has a half-life of 2.6 days. By allowing sufficient decay time, ⁶⁴Cu will naturally reduce to negligible levels. However, extended decay periods also lead to the loss of ⁶⁷Cu activity, necessitating a balance between impurity reduction and overall yield preservation.

For an optimized approach, a cooling time of approximately two to three half-lives of ⁶⁴Cu (~24–36 hours) may be considered, reducing ⁶⁴Cu contamination while maintaining acceptable ⁶⁷Cu recovery. Future studies should explore the precise trade-off between decay time and final yield optimization.

Table 1 summarizes the production efficiency of 67 Cu relative to impurity 64 Cu, providing a comparative evaluation of the two production routes. These calculations were performed under the conditions of a 1 μ A beam current and an irradiation time of 62 hours,

which corresponds to the point at which the saturation factor of 67 Cu reaches 50 %.

Table 1. Comparison of ⁶⁷cu production efficiency relative to ⁶⁴Cu impurity for the two reaction routes

Target	Energy Range	67Cu @ EOB	64Cu @ EOB	67Cu/(64Cu+67Cu)	67Cu/(64Cu+67Cu
	(MeV)	(MBq/µA)	(MBq/µA)	@ EOB	@ 24h post EOB
⁶⁸ Zn	91-62	2,000	14,000	11.1 %	26.3 %
⁷⁰ Zn	91-62	4,000	5,400	42.6 %	67.4 %

3. Conclusions

This study presents a comparative analysis of ⁶⁷Cu production via the ⁶⁸Zn(p,2p) and ⁷⁰Zn(p,x) reactions, incorporating newly extended cross-section data up to 100 MeV. The results confirm that ⁷⁰Zn exhibits significantly higher cross-sections in the high-energy region, yielding nearly twice as much ⁶⁷Cu as ⁶⁸Zn. Furthermore, the ⁷⁰Zn(p,x) pathway generates substantially lower amounts of ⁶⁴Cu, a chemically inseparable impurity, making it a more practical choice for high-purity ⁶⁷Cu production.

While the ⁷⁰Zn target offers superior production efficiency, economic factors remain a crucial consideration. Enriched ⁷⁰Zn is significantly more expensive than ⁶⁸Zn, necessitating a cost-benefit analysis when selecting target materials. Additionally, the presence of ⁶⁴Cu requires a careful balance between decay cooling and overall yield retention.

The findings of this study highlight the importance of optimizing both production efficiency and economic feasibility for large-scale ⁶⁷Cu supply. Future work should focus on refining tandem target configurations, optimizing irradiation conditions, and determining the optimal cooling duration to maximize ⁶⁷Cu purity while minimizing unnecessary loss.

REFERENCES

[1] K. Knogler, et al., Copper-67 Radioimmunotherapy and growth inhibition by anti–L1-cell adhesion molecule monoclonal antibodies in a therapy model of ovarian Cancer metastasis, Clinical Cancer Research, 13 (2007) 603-611.

[2] G. Pupillo et al., Cyclotron production of 67 Cu: a new measurement of the 68 Zn (p,2p) 67 Cu, 68 Zn(p,2n) 67 Ga and 68 Zn (p,3n) 66 Ga nuclear cross sections, Nucleus.

[3] M.-H. Jung et al., Cross-section measurements for 68 Zn(p, 2p) 67 Cu and 68 Zn(p,2n) 67 Ga reactions using a newly developed separation method for the superposed γ -ray spectra, Scientific Reports, 13 (2023) 11326.

[4] G. Pupillo et al., Production of ⁶⁷Cu by enriched ⁷⁰Zn targets: first measurements of formation cross sections of ⁶⁷Cu, ⁶⁴Cu, ⁶⁷Ga, 66Ga, ^{69m}Zn and ⁶⁵Zn in interactions of ⁷⁰Zn with protons above 45 MeV, Radiochimica Acta, 108 593-602.

[5] M.-H. Jung et al., First 70 Zn(p,x) nuclear cross section measurements for theranostic 67 Cu radionuclide production extended up to 100 MeV, Applied Radiation and Isotopes, 215 (2025) 111579.

[6] M. Sitarz, Tool-Radionuclide yield calculator, 2023.