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1. Introduction

Copper-67 (6’Cu) is a key theranostic radionuclide
with applications in imaging and targeted radiotherapy
[1]. Its production relies on proton-induced nuclear
reactions, primarily using enriched zinc targets. The
most studied reaction pathway is %zn(p,2p)¥’Cu [2, 3],
which provides high yields at moderate proton energies.
Alternatively, 7°Zn(p,x)¥’Cu [4, 5] has been investigated
as a secondary route, though its cross-section and
efficiency remain less established.

Accurate cross-section measurements are essential for
optimizing %Cu production, ensuring high yields while
minimizing  impurities.  Previous  studies  have
independently examined %Zn and 7°Zn targets [3, 5], but
a direct comparison is necessary to assess their relative
advantages. This study compiles experimental data from
separate measurements of ¢’Cu production via these two
isotopes, providing a systematic analysis of their cross-
section trends. The findings will aid in refining target
selection and irradiation conditions, supporting the
development of efficient ¥’Cu production methods for
medical applications.

2. Data Sources and Analysis Methods

This study is based on previously published cross-
section measurements for the %Zzn(p,2p)®’Cu and
9Zn(p,x)®’Cu reactions. The cross-section data were
obtained from two independent experimental studies,
where enriched zinc targets were irradiated with proton
beams and the resulting activation was analyzed via
gamma-ray spectrometry.

To ensure consistency, all data were normalized and
cross-compared over the full energy range up to 100
MeV. The measured excitation functions were analyzed
to determine the optimal energy regions for ®Cu
production. Additionally, reaction yield calculations
were performed based on the cross-section data and
isotope decay parameters. The obtained production
efficiencies were further evaluated in the context of
enriched zinc target costs to assess the cost-
effectiveness of each reaction route.

The details of the original experimental procedures,
including target preparation, proton irradiation
conditions, and gamma-ray spectrometry, can be found
in the original publications [3, 5].

3. Cross-Section Data Comparison and Yield
Estimation

The cross-section data for the #Zn(p,2p)®’Cu and
0Zn(p,x)%Cu reactions were obtained from previously
published studies [3] [5]. Figure 1 shows the measured
excitation functions for each reaction.
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Figure 1. Measured excitation functions for 8Zn(p,2p)®’Cu and
70Zn(p,X)8’Cu reactions

The results indicate that the peak cross-section for
8Zn(p,2p)®’Cu occurs at 100 MeV with a maximum
value of 12.21 + 0.55 mb, while °Zn(p,x)¢’Cu reaches
its highest value of 24.38 + 1.52 mb at the same energy,
nearly twice that of the ®8Zn reaction. These findings
extend the available nuclear data beyond the previously
reported 70 MeV limit, providing critical new insights
into high-energy production pathways.

Based on these cross-section data, the estimated
production yield for Cu was calculated using the
Radionuclide Yield Calculator (RYC) [6], a
computational tool for predicting radionuclide
production under specific irradiation conditions. Figure
2 presents the calculated yields of radionuclides using
RYC.
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Figure 2. Calculated yields of ’Cu were obtained using RYC
The analysis confirms that 7°Zn is the superior choice
in the high-energy region (>60 MeV), while ®Zn

remains effective in the 40-60 MeV range.

4. Comparison and Discussio
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The %Zn(p,2p)®"Cu reaction is a well-established and
widely used production route for 6’Cu, particularly in
the moderate proton energy range of 40-100 MeV.
Below 30 MeV, the "°Zn(p,a)®’Cu reaction has been
employed (Kastleiner, 1999 #216), but its cross-section
at higher energies remained largely unreported until
recent studies. The work by G. Pupillo’s group extended
9Zn(p,x)¢”Cu cross-section data up to 70 MeV (Pupillo,
#196), while this study further expands it to 100 MeV
(Jung, 2025 #289), revealing a significant advantage of
the 79Zn target in the high-energy region.

A critical factor in evaluating production efficiency is
the generation of impurities, particularly %Cu. Although
®4Cu is a different isotope from 6Cu, it exhibits
identical chemical properties as copper, making
chemical separation ineffective. This presents a
challenge in obtaining high-purity $’Cu for medical
applications. Figure 3 illustrates the production yield of
®4Cu as a function of proton energy.
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Figure 3. Calculated yields of “Cu were obtained using RYC

As shown in Figures 2 and 3, the "°Zn(p,x)*’Cu
reaction not only provides approximately twice the yield
of 5Cu compared to %Zn(p,2p)®’Cu but also produces
significantly lower amounts of ®Cu. This further
enhances the practical advantage of using °Zn as a
target material.

Since %Cu cannot be chemically separated from ¢’Cu,
an alternative purification strategy involves utilizing
their different half-lives. Cu has a half-life of 12.7
hours, whereas 5Cu has a half-life of 2.6 days. By
allowing sufficient decay time, %Cu will naturally
reduce to negligible levels. However, extended decay
periods also lead to the loss of $Cu activity,
necessitating a balance between impurity reduction and
overall yield preservation.

For an optimized approach, a cooling time of
approximately two to three half-lives of ®Cu (~24-36
hours) may be considered, reducing ¢Cu contamination
while maintaining acceptable $’Cu recovery. Future
studies should explore the precise trade-off between
decay time and final yield optimization.

Table 1 summarizes the production efficiency of 6’Cu
relative to impurity ®Cu, providing a comparative
evaluation of the two production routes. These
calculations were performed under the conditions of a 1
pA beam current and an irradiation time of 62 hours,

which corresponds to the point at which the saturation
factor of 5’Cu reaches 50 %.

Table 1. Comparison of 7cu production efficiency relative to $4Cu
impurity for the two reaction routes

Energy Range ¥7Cu @ EOB %Cu @ EOB S7Cu/(%*Cu+*7Cu)  ¥7Cu/(%Cu+"Cu)

Target

(MeV) (MBq/uA) (MBq/uA) @ EOB @ 24h post EOB
$Zn 91-62 2,000 14,000 11.1% 26.3%
7°Zn 91-62 4,000 5,400 426 % 67.4%

3. Conclusions

This study presents a comparative analysis of ¢’Cu
production via the ®8Zn(p,2p) and °Zn(p,x) reactions,
incorporating newly extended cross-section data up to
100 MeV. The results confirm that °Zn exhibits
significantly higher cross-sections in the high-energy
region, yielding nearly twice as much $Cu as %8Zn.
Furthermore, the 7Zn(p,x) pathway generates
substantially lower amounts of Cu, a chemically
inseparable impurity, making it a more practical choice
for high-purity Cu production.

While the Zn target offers superior production
efficiency, economic factors remain a crucial
consideration. Enriched 7°Zn is significantly more
expensive than %Zn, necessitating a cost-benefit
analysis when selecting target materials. Additionally,
the presence of $Cu requires a careful balance between
decay cooling and overall yield retention.

The findings of this study highlight the importance of
optimizing both production efficiency and economic
feasibility for large-scale $7Cu supply. Future work
should focus on refining tandem target configurations,
optimizing irradiation conditions, and determining the
optimal cooling duration to maximize $’Cu purity while

minimizing unnecessary loss.
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