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❑ Duplex Stainless Steel in Various Nuclear Reactors

⚫ Excellent Corrosion Resistance & Mechanical Properties

 Duplex structure : Ferritic + Austenitic phases

 Widely used in nuclear reactor components (e.g. cladding materials)

⚫ Microstructural Evolution of Matrices under irradiation condition

 Austenitic : Void swelling → Mechanical Degradation

 Ferritic : Spinodal Decomposition → Embrittlement

 Cladding tube : Requirement of thin-wall structure due to neutron penalty

 

Introduction

Ferritic matrix

Austenitic matrix
Void swelling

Spinodal Decomposition ▲ TEM image of void swelling in commercial austenitic 

stainless steel after heavy ion irradiation (316 SS) [1]

▲ TEM image and corresponding EDS mapping data for 

showing the presence of spinodal decomposition in 𝛿-ferrite 

after proton irradiation [2]

[1] J.H Shin et. al., Journal of Nuclear Materials, 564:153678~ (2022)

[2] B.S Kong et. Al., Journal of Nuclear Materials, 533:152656~ (2021)
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❑ Development of Alumina-forming duplex stainless steel (ADSS)

⚫ Chemical composition

 18 – 21 Ni & 16 – 21 Cr

 Ni : Austenitic stabilizer & High-temperature tensile strength

 Cr : Ferritic stabilizer & Oxidation resistance

 5 – 6 Al

 Formation of B2-NiAl precipitates in both austenitic & ferritic matrix

⚫ Role of B2-NiAl precipitates in ADSS

 Better mechanical properties compared to the other alloys (APM : Ferritic, 310 SS : Austenitic)

 Better corrosion resistance in oxidation & MSR environments

 Dissolution of B2-NiAl near surface (B2-denude zone) → Al reservoir for the formation of 𝛼-alumina (protective layer)

 Better radiation resistance for both matrices?

Introduction
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Composition (wt.%) Fe Cr Ni Al Nb Mn Si C

ADSS Bal. 16.76 19.2 5.84 0.33 0.84 0.11 0.0874

APM (Ref.) Bal. 21.9 - 5.81 - 0.16 0.28 0.03

310 SS (Ref.) Bal. 24.7 19 - - 0.87 0.06 0.06

▲ Chemical composition of the ADSS and other commercial Fe-base reference alloys (APM, 310 SS) measured by ICP-AES analysis [1]

▲ SEM image of ADSS with B2-NiAl precipitates [1] ▲ Cross-sectional SEM image of ADSS after corrosion test ▲ Tensile test results for various ADSS alloys [1] 

[1] H. Kim et. al., Journal of Nuclear Materials, 507:1~14 (2018)
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❑ Proton Irradiation for simulation of neutron irradiation

⚫ Materials

 ADSS : Comparison between Austenitic matrix and Ferritic matrix

⚫ Irradiation condition

 Stopping and Range of Ions in Matter (SRIM) simulation

 360 ℃ static defocusing beam with 2 MeV proton in Michigan Ion Beam Laboratory (MIBL)

 40 eV displacement energy in Kinchin-Pease model (K-P model)

 Targeted damage : 1 ~ 2 dpa below 1 𝜇m depth region 

 Dose rate : 1 × 10−5 dpa /sec 

❑ Microstructural Analysis

Experimental Approach : Proton Irradiation & Microstructural Analysis
5
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▲ Graphical schematic for TEM specimen fabrication from unirradiated / irradiated ADSS alloys via FIB
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❑ Nano-indentation test for evaluating radiation-induced hardening

⚫ Nano-indentation test condition

 Nano-DMA mode with Berkovich indenter (KAIST NQE)

 10 x 10 arrays from unirradiated & irradiated each matrices of ADSS at room temperature

⚫ Evaluation of Radiation-induced hardening under proton irradiation

 Bulk hardness interpretation via Nix-Gao modelling from measured nano-hardness

 Quantifying the radiation hardening as a function of microstructural evolution of each matrix

 

Experimental Approach : Nano-indentation

Proton irradiation

Load

8 𝜇m 
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❑ Overview Microstructural Evolution within matrices

⚫ Austenitic matrix before & after irradiation

 Before Irradiation

 Smaller B2-NiAl precipitates compared to ferritic matrix

 Smaller number density of B2-NiAl 

 After Irradiation

 Huge dissolution of large B2-NiAl precipitates

 No re-precipitation of B2-NiAl precipitates

 Formation of Nb-rich precipitates

⚫ Ferritic matrix before & after irradiation

 Before Irradiation

 Large B2-NiAl precipitates

 High Number density of B2-NiAl

 After Irradiation

 Dissolution of large B2-NiAl precipitates

 Re-precipitation of smaller size B2-NiAl precipitates nearby

Results : Microstructural Evolution

Before Irradiation After Irradiation

Austenitic

Matrix

Ferritic

Matrix

Large 

B2-NiAl

Smaller 

B2-NiAl

▲ SEM micrographs of microstructural evolution of both austenitic and ferritic matrix in ADSS alloy along the proton irradiation
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❑ TEM analysis on microstructural evolution of austenitic matrix

⚫ Formation of 𝜸′-𝐍𝐢𝟑𝐀𝐥 precipitates

 Before Irradiation

 Uniform Ni & Al distribution without 𝜸′-𝐍𝐢𝟑𝐀𝐥 precipitates

 After Irradiation

 Formation of nano-sized 𝜸′-𝐍𝐢𝟑𝐀𝐥 precipitates (Localized Ni & Al enrichment + FFT pattern)

 Average size (radius) : 4.50 ± 1.29 nm, Number density : 3.70 ± 0.28 × 1023 # / m3

 

Results : Microstructural Evolution
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Unirradiated ADSS (Austenitic matrix) Irradiated ADSS (Austenitic matrix)
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❑ TEM analysis on microstructural evolution of austenitic matrix

⚫ Strengthening effect estimation for 𝜸′-𝐍𝐢𝟑𝐀𝐥 precipitates in Austenitic matrix

 Shearing Mechanism : Modulus & Coherency Strengthening

 ∆𝜏𝑚𝑜𝑑 = 0.0055 ∙ (∆𝐺)3/2∙ (
2𝑓

𝐺
)1/2∙ (

𝐷

2𝑏
)

3𝑚

2
−1

 ∆𝜏𝑐𝑜ℎ = 𝛼 ∙ 𝐺 ∙ 𝜀3/2 ∙ (
𝐷∙𝑓

𝑏
)1/2

 Bypass Mechanism : Orowan Strengthening (Dominant)

 Precipitate radius (~ 4.5 nm) > Critical radius (~ 0.51 nm)

 ∆𝜏𝑂𝑟𝑜𝑤𝑎𝑛 =
0.28∙𝐺∙𝑏

𝜋∙𝜆𝑠∙ 1−𝜈 0.5 𝑙𝑛
1.63∙𝑟

𝑏
~680.42 MPa 

 

Results : Microstructural Evolution
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▲ Graphical schematic for precipitate shearing mechanism and bypass mechanism [1]

[1] M.A. Moretti, Microstructure and property models of alloy 718 

applicable for simulation of manufacturing processes (2022)

▲ Estimated strengthening effect of 𝛾′-Ni3Al precipitates as a function of precipitate radius (nm)
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❑ TEM analysis on microstructural evolution of ferritic matrix

⚫ Coarsening of Nano-sized B2-NiAl in ferritic matrix

 Before Irradiation

 Average size : 9.05 ± 3.67 nm, Number density : 2.4 ± 0.68 × 1022 # / m3

 After Irradiation

 More distinct Ni distribution in nano-sized B2-NiAl precipitates

 Average size : 15.75 ± 3.36 nm, Number density : 9.67 ± 0.43 × 1021 # / m3

Results : Microstructural Evolution

Unirradiated ADSS (Ferritic matrix) Irradiated ADSS (Ferritic matrix)
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❑ TEM analysis on microstructural evolution of ferritic matrix

⚫ Strengthening effect estimation for coarsened nano-sized B2-NiAl precipitates in ferritic matrix

 Orowan Strengthening (Dominant)

 𝜏𝑂𝑟𝑜𝑤𝑎𝑛,𝑢𝑛𝑖𝑟𝑟 =
0.28∙𝐺∙𝑏

𝜋∙𝜆𝑠∙ 1−𝜈 0.5 𝑙𝑛
1.63∙𝑟

𝑏
~248.9 MPa vs. 𝜏𝑂𝑟𝑜𝑤𝑎𝑛,𝑖𝑟𝑟 =

0.28∙𝐺∙𝑏

𝜋∙𝜆𝑠∙ 1−𝜈 0.5 𝑙𝑛
1.63∙𝑟

𝑏
~340.0 MPa : ∆𝝉𝑶𝒓𝒐𝒘𝒂𝒏,𝑩𝟐 ~ 𝟗𝟏. 𝟏 𝑴𝑷𝒂

Results : Microstructural Evolution
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❑ TEM analysis on microstructural evolution of B2-NiAl

⚫ Coarsening of Fe-Cr rich phase in large B2-NiAl (Further Analyses Required)

 Before Irradiation

 Fine Fe-Cr rich precipitates inside large B2-NiAl precipitates

 Average size : 15.71 ± 4.98 nm (Considering only more than 10 nm size)

 After Irradiation

 Coarsening of Fe-Cr rich precipitates inside large B2-NiAl precipitates 

 Average size : 34.57 ± 7.69 nm (Considering only more than 10 nm size)

 More distinct Fe & Cr distribution within large B2 → Distinct phase separation within B2-NiAl precipitates

 

Results : Microstructural Evolution

Unirradiated ADSS (Ferritic matrix) Irradiated ADSS (Ferritic matrix)
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❑ Correlation between Strengthening Mechanism & Nano-hardness Measurement

⚫ Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation

 Austenitic matrix

 Dissolution of B2-NiAl (Softening) 

 Formation of 𝛾′-𝑁𝑖3𝐴𝑙 (Hardening)

Results : Evaluation of Nano-hardness
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❑ Correlation between Strengthening Mechanism & Nano-hardness Measurement

⚫ Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation

 Ferritic matrix (5.61±0.23 → 5.91±0.27 GPa)

 Dissolution of B2-NiAl (Softening) + Re-precipitation of B2-NiAl (Hardening)

 Coarsening of nano-sized B2-NiAl (Hardening) 

 Coarsening of Fe-Cr rich precipitates inside large B2-NiAl

Results : Evaluation of Nano-hardness
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❑ Correlation between Strengthening Mechanism & Nano-hardness Measurement

⚫ Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation

 Hardness Convergence after the proton irradiation

 The formation of 𝛾′-𝑁𝑖3𝐴𝑙 precipitates sharply increases the bulk-hardness of 

austenitic matrix (4.91±0.3 → 5.78±0.24 GPa)

 The combination of softening & hardening effect causes smaller increase

in bulk-hardness of ferritic matrix (5.61±0.23 → 5.91±0.27 GPa)

 The bulk-hardness difference between austenitic & ferritic matrix decreases 

Results : Evaluation of Nano-hardness
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❑ Correlation between Microstructural Evolution and Nano-mechanical Properties

⚫ Proton irradiation based on SRIM Simulation

 Test condition

 2 MeV proton beam at 360 ℃ 

 Target damage : 1 ~ 2 dpa near 1 𝜇m depth region 

⚫ Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation

 Austenitic matrix

 Substantial hardening (+ 0.87 GPa) 

 Mainly due to the formation of nano-sized 𝛾′-𝑁𝑖3𝐴𝑙 precipitates (compared to the dissolution of large B2-NiAl precipitates)

 Ferritic matrix

 Smaller hardening (+0.31 GPA)

 Balancing between softening (Dissolution of B2-NiAl) and hardening (Coarsening of nano-sized B2 and re-precipitation of B2-NiAl)

 Effect of coarsening and loss of coherency in Fe-Cr rich precipitates on radiation hardening requires further microstructural & nano-indentation based analyses

 Convergence in mechanical property under proton irradiation condition

 Different microstructural evolutions in both matrices lead to the decrease in bulk-hardness difference

Summary & Conclusion
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