

Radiation Resistance of Duplex Stainless Steel under Proton Irradiation : Correlation between Microstructural Evolution and Nano-mechanical Properties

Date : May 22nd, 2025 Time : 15:30 ~ 15:50

<u>Hyun Joon Eom</u>, Sumin Kim, Chaewon Jeong, Ye-jin Kweon, Changheui Jang* (KAIST), Chaewon Kim (KAERI)

Nuclear & High Temperature Materials Laboratory Department of Nuclear & Quantum Engineering, KAIST

Contents

I. Introduction

II. Experimental Approach

- Part I: Proton Irradiation & Microstructural Analysis
- Part II: Nano-indentation

III. Results

- Part I: Microstructural Evolution
- Part II: Evaluation of Nano-hardness
- **IV. Summary & Conclusion**

Introduction

Duplex Stainless Steel in Various Nuclear Reactors

- Excellent Corrosion Resistance & Mechanical Properties
 - Duplex structure : Ferritic + Austenitic phases
 - Widely used in nuclear reactor components (e.g. cladding materials)
- Microstructural Evolution of Matrices under irradiation condition
 - Austenitic : Void swelling \rightarrow Mechanical Degradation
 - Ferritic : Spinodal Decomposition \rightarrow Embrittlement
 - Cladding tube : Requirement of thin-wall structure due to neutron penalty

▲ TEM image of void swelling in commercial austenitic stainless steel after heavy ion irradiation (316 SS) [1]

▲ TEM image and corresponding EDS mapping data for showing the presence of spinodal decomposition in δ-ferrite after proton irradiation [2]

Temperature Materi

Introduction

Development of Alumina-forming duplex stainless steel (ADSS)

- Chemical composition
 - 18 21 Ni & 16 21 Cr

Ni : Austenitic stabilizer & High-temperature tensile strength

□ Cr : Ferritic stabilizer & Oxidation resistance

Ni AI Nb Si Composition (wt.%) Fe Cr Mn С 5.84 ADSS Bal. 16.76 19.2 0.33 0.84 0.11 0.0874 APM (Ref.) 5.81 0.16 0.28 0.03 Bal. 21.9 310 SS (Ref.) 24.7 0.87 Bal. 19 0.06 0.06

▲ Chemical composition of the ADSS and other commercial Fe-base reference alloys (APM, 310 SS) measured by ICP-AES analysis [1]

- 5 – 6 Al

□ Formation of **B2-NiAl precipitates** in both austenitic & ferritic matrix

- Role of B2-NiAl precipitates in ADSS
 - Better mechanical properties compared to the other alloys (APM : Ferritic, 310 SS : Austenitic)
 - Better corrosion resistance in oxidation & MSR environments

 \Box Dissolution of B2-NiAl near surface (B2-denude zone) \rightarrow Al reservoir for the formation of α -alumina (protective layer)

- Better radiation resistance for both matrices?

Experimental Approach : Proton Irradiation & Microstructural Analysis

Proton Irradiation for simulation of neutron irradiation

- Materials
 - ADSS : Comparison between Austenitic matrix and Ferritic matrix
- Irradiation condition
 - Stopping and Range of Ions in Matter (SRIM) simulation
 - □ 360 °C static defocusing beam with 2 MeV proton in Michigan Ion Beam Laboratory (MIBL)
 - □ 40 eV displacement energy in Kinchin-Pease model (K-P model)
 - \square Targeted damage : 1 ~ 2 dpa below 1 μ m depth region
 - \Box Dose rate : 1×10^{-5} dpa /sec

Microstructural Analysis

▲ The radiation damage (DPA) as a function of penetration depth (μ m) in

▲ Graphical schematic for TEM specimen fabrication from unirradiated / irradiated ADSS alloys via FIB

Experimental Approach : Nano-indentation

□ Nano-indentation test for evaluating radiation-induced hardening

Nano-indentation test condition

KAIS

- Nano-DMA mode with Berkovich indenter (KAIST NQE)
- 10 x 10 arrays from unirradiated & irradiated each matrices of ADSS at room temperature

- Bulk hardness interpretation via **Nix-Gao modelling** from measured nano-hardness
- Quantifying the radiation hardening as a function of microstructural evolution of each matrix

Overview Microstructural Evolution within matrices

- Austenitic matrix before & after irradiation
 - Before Irradiation
 - □ Smaller B2-NiAI precipitates compared to ferritic matrix
 - □ Smaller number density of B2-NiAl

After Irradiation

- □ Huge dissolution of large B2-NiAl precipitates
- □ No re-precipitation of B2-NiAl precipitates
- □ Formation of Nb-rich precipitates

• Ferritic matrix before & after irradiation

- Before Irradiation
 - □ Large B2-NiAl precipitates
 - □ High Number density of B2-NiAl

- After Irradiation

KAIST

- □ Dissolution of large B2-NiAl precipitates
- □ Re-precipitation of smaller size B2-NiAI precipitates nearby

▲ SEM micrographs of microstructural evolution of both austenitic and ferritic matrix in ADSS alloy along the proton irradiation

TEM analysis on microstructural evolution of austenitic matrix

- Formation of γ' -Ni₃Al precipitates
 - Before Irradiation
 - \Box Uniform Ni & Al distribution without γ' -Ni₃Al precipitates
 - After Irradiation

KAIST

- \Box Formation of nano-sized γ' -Ni₃Al precipitates (Localized Ni & Al enrichment + FFT pattern)
- \Box Average size (radius) : 4.50 \pm 1.29 nm, Number density : 3.70 \pm 0.28 \times 10²³ # / m³

Unirradiated ADSS (Austenitic matrix)

Irradiated ADSS (Austenitic matrix)

- **TEM** analysis on microstructural evolution of austenitic matrix
 - Strengthening effect estimation for γ' -Ni₃Al precipitates in Austenitic matrix
 - Shearing Mechanism : Modulus & Coherency Strengthening
 - $\Box \ \Delta \tau_{mod} = 0.0055 \cdot (\Delta G)^{3/2} \cdot (\frac{2f}{G})^{1/2} \cdot (\frac{D}{2b})^{\frac{3m}{2}-1}$
 - $\Box \ \Delta \tau_{coh} = \alpha \cdot G \cdot \varepsilon^{3/2} \cdot (\frac{D \cdot f}{b})^{1/2}$

KAIST

- Bypass Mechanism : Orowan Strengthening (Dominant)
 - □ Precipitate radius (~ 4.5 nm) > Critical radius (~ 0.51 nm)
 - $\Box \ \Delta \tau_{Orowan} = \frac{0.28 \cdot G \cdot b}{\pi \cdot \lambda_s \cdot (1 \nu)^{0.5}} ln\left(\frac{1.63 \cdot r}{b}\right) \sim 680.42 \text{ MPa}$

▲ Graphical schematic for precipitate shearing mechanism and bypass mechanism [1]

• Estimated strengthening effect of γ' -Ni₃Al precipitates as a function of precipitate radius (nm)

TEM analysis on microstructural evolution of ferritic matrix

- Coarsening of Nano-sized B2-NiAI in ferritic matrix
 - Before Irradiation

 \square Average size : 9.05 \pm 3.67 nm, Number density : 2.4 \pm 0.68 \times 10 22 # / m 3

After Irradiation

KAIST

- □ More distinct Ni distribution in nano-sized B2-NiAI precipitates
- \square Average size : 15.75 \pm 3.36 nm, Number density : 9.67 \pm 0.43 \times 10²¹ # / m³

Unirradiated ADSS (Ferritic matrix)

Irradiated ADSS (Ferritic matrix)

- **TEM** analysis on microstructural evolution of ferritic matrix
 - Strengthening effect estimation for coarsened nano-sized B2-NiAI precipitates in ferritic matrix
 - Orowan Strengthening (Dominant)

 $\Box \tau_{Orowan,unirr} = \frac{0.28 \cdot G \cdot b}{\pi \cdot \lambda_c \cdot (1-\nu)^{0.5}} ln\left(\frac{1.63 \cdot r}{b}\right) \sim 248.9 \text{ MPa vs. } \tau_{Orowan,irr} = \frac{0.28 \cdot G \cdot b}{\pi \cdot \lambda_c \cdot (1-\nu)^{0.5}} ln\left(\frac{1.63 \cdot r}{b}\right) \sim 340.0 \text{ MPa} : \Delta \tau_{Orowan,B2} \sim 91.1 \text{ MPa}$ 1.4 Unirradiated Irradiated 1.2 GPa Strengthening effect, GPa 2.0 Strengthening effect, 1.0 **Shearing Mechanism** $\Delta \tau_{Modulus} + \Delta \tau_{Coheren}$ 1.5 0.8 **Orowan Mechanism** $\Delta \tau_{Orowan} = \frac{0.28 \cdot G \cdot b}{\pi \cdot \lambda_{\circ} \cdot (1 - \nu)^{0.5}} ln(\frac{1.63 \cdot r}{b})$ 0.6 1.0 **Orowan Mechanism** 0.4 $\Delta \tau_{Orowan} = \frac{0.28 \cdot G \cdot b}{\pi \cdot \lambda \cdot (1-\nu)^{0.5}} \ln(1-\nu)^{0.5} \ln(1$ $\Delta \tau_{Orowan.unirr} \sim 248.9$ MPa 0.5 $\Delta \tau_{Orowan,irr} \sim 340.0 \text{ MPa}$ 0.2 **Shearing Mechanism Critical radius Critical radius** $\Delta \tau_{Modulus} + \Delta \tau_{Coherency}$ ~ 7.5 nm ~ 3.6 nm 0.0 0.0 16 10 14 18 10 12 **KAIS Radius of precipitate, nm Radius of precipitate, nm**

- **TEM** analysis on microstructural evolution of B2-NiAl
 - Coarsening of Fe-Cr rich phase in large B2-NiAI (Further Analyses Required)
 - Before Irradiation
 - □ Fine Fe-Cr rich precipitates inside large B2-NiAl precipitates
 - □ Average size : 15.71 ± 4.98 nm (Considering only more than 10 nm size)
 - After Irradiation
 - □ Coarsening of Fe-Cr rich precipitates inside large B2-NiAl precipitates
 - \Box Average size : 34.57 \pm 7.69 nm (Considering only more than 10 nm size)
 - □ More distinct Fe & Cr distribution within large B2 → Distinct phase separation within B2-NiAl precipitates

Unirradiated ADSS (Ferritic matrix)

luclear & High Temperature Materials Lab.

Irradiated ADSS (Ferritic matrix)

Results : Evaluation of Nano-hardness

- **Correlation between Strengthening Mechanism & Nano-hardness Measurement**
 - Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation
 - Austenitic matrix
 - □ Dissolution of B2-NiAI (Softening)
 - \Box Formation of γ' -Ni₃Al (Hardening)

Results : Evaluation of Nano-hardness

- **Correlation between Strengthening Mechanism & Nano-hardness Measurement**
 - Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation
 - Ferritic matrix (5.61 $\pm 0.23 \rightarrow$ 5.91 ± 0.27 GPa)
 - □ Dissolution of B2-NiAI (Softening) + Re-precipitation of B2-NiAI (Hardening)
 - □ Coarsening of nano-sized B2-NiAI (Hardening)
 - □ Coarsening of Fe-Cr rich precipitates inside large B2-NiAl

Results : Evaluation of Nano-hardness

- **Correlation between Strengthening Mechanism & Nano-hardness Measurement**
 - Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation
 - Hardness Convergence after the proton irradiation

□ The formation of γ' -Ni₃Al precipitates sharply increases the bulk-hardness of austenitic matrix (4.91±0.3 → 5.78±0.24 GPa)

- □ The combination of softening & hardening effect causes smaller increase in bulk-hardness of ferritic matrix (5.61 \pm 0.23 \rightarrow 5.91 \pm 0.27 GPa)
- □ The bulk-hardness difference between austenitic & ferritic matrix decreases

Different microstructural evolutions in austenitic & ferritic matrix lead to convergence in mechanical property under proton irradiation

Summary & Conclusion

Correlation between Microstructural Evolution and Nano-mechanical Properties

- Proton irradiation based on SRIM Simulation
 - Test condition

 $\square\ 2$ MeV proton beam at 360 °C

 \Box Target damage : 1 ~ 2 dpa near 1 μ m depth region

• Microstructural Evolution vs. Nano-hardness Measurement after proton irradiation

- Austenitic matrix
 - □ Substantial hardening (+ 0.87 GPa)

 \square Mainly due to the formation of nano-sized γ' -Ni₃Al precipitates (compared to the dissolution of large B2-NiAl precipitates)

- Ferritic matrix

- □ Smaller hardening (+0.31 GPA)
- Balancing between softening (Dissolution of B2-NiAI) and hardening (Coarsening of nano-sized B2 and re-precipitation of B2-NiAI)
- Effect of coarsening and loss of coherency in Fe-Cr rich precipitates on radiation hardening requires further microstructural & nano-indentation based analyses

- Convergence in mechanical property under proton irradiation condition

Different microstructural evolutions in both matrices lead to the decrease in bulk-hardness difference

Energy for Earth !!

Thank you!

