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1. Introduction 

 
With the rapid advancement and widespread adoption 

of artificial intelligence (AI), the number of applications 

for AI-based approaches in nuclear engineering is 

steadily increasing. Particularly for nuclear core 

analysis, several AI-based surrogate models were 

proposed using data from the results of core design 

code or data constructed based on the physical equation. 

Examples of these models include the reconstruction of 

in-core power distribution based on the signals from 

neutron detectors[1], a core analysis surrogate model 

trained on data calculated from core design codes[2], 

and others. 

In this study, we compared the prediction errors of 

neural network models trained on the calculation results 

of the design code, distinguished by data shape and 

model structure. As a baseline for comparison, we 

employed a convolutional neural network (CNN)[3]-

based model. This model has demonstrated the 

effectiveness of AI-based surrogate models in 

predicting core parameters and power distribution at the 

beginning of the cycle (BOC) [2][4]. 

However, when estimating the axial shape index 

(ASI), a crucial metric used in flexible operation, 

relatively high errors were observed compared to other 

parameters. The base model attempted to predict the 

scalar value ASI directly from the input loading pattern 

data. Since ASI represents the axial power difference 

between the upper and lower regions of the core, it 

compresses three-dimensional information into a single 

value. This compression likely leads to information loss, 

making it inherently difficult for the model to make 

accurate predictions. 

To improve accuracy, this study explored three 

approaches: (1) providing additional information related 

to reactor core control, (2) applying a fine-tuning 

strategy, and (3) recalculating ASI from the predicted 

3D power distribution instead of using ASI directly as a 

target data. The effectiveness of these methods was 

evaluated by comparing them with the model used in 

the previous study. 

 

 

 

 

2. Methods 

 

In this section, we describe the methodology used to 

compare the baseline model with four additional 

improved models. The first part discusses how the 

dataset is constructed, including its shape and features. 

The second part presents the input/output shapes and 

architectures of the models. Additionally, we provide 

specifications for the computational server used to train 

the models. 

 

2.1 Data Preparation 

 

The models in this study employed a common 

quadrant core loading pattern as input data, but the 

loading patterns were processed differently depending 

on the architecture of each model. The loading patterns 

were constructed by randomly placing fuel assemblies. 

Each assembly differs in terms of fuel and burnable 

absorber concentration, number of burnable absorber 

rods, and their configuration. Based on a total of 37,532 

loading patterns, core analysis was conducted at the 

Beginning of Cycle (BOC) using an in-house code, and 

the results were obtained. 

The common quadrant core loading pattern can be 

represented in both 2D and 3D forms. The data shape in 

the 2D representation is a 5 x 5 matrix, and there is only 

one axial plane. In the 3D model, the composition of 

fuel assemblies in the loading pattern remains constant 

throughout the axial direction, and the included data 

information is identical to that of the 2D representation. 

However, it consists of 24 axial planes, and at the 

topmost plane, there is a cutback region composed 

solely of rods enriched with 4 w/o U-235. Consequently, 

the data shape for the 3D representation is 24 × 5 × 5. 

The loading pattern was originally constructed using 

fuel assembly batch symbols, such as 'A2' and ‘B0'. 

However, since the input data must be in numerical 

rather than character form, we converted the original 

data into numerical form using seven two-group 

macroscopic cross-section data obtained by 

homogenizing the cross-section information of the 

constituent materials in the fuel assembly. Using these 

cross-section data, we transformed the 2D and 3D 

loading patterns into 3D and 4D cross-section 

representations, respectively. Figure 1 shows an 

example of this conversion procedure. 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 22-23, 2025 

 

 
For the macroscopic cross sections, we used nu-

fission (𝜈Σ_𝑓), capture (Σ_𝑐), transport (Σ_𝑡𝑟), and 

scattering (Σ_𝑠) cross sections, excluding up-scattering 

in the second group. Since we assumed that up-

scattering does not occur in the second group, we did 

not include the second group's scattering cross section. 

Consequently, the processed 2D loading pattern is 

represented as a 5 × 5 × 7 three-dimensional (3D) 

matrix, with the last dimension (7) representing the 

macroscopic cross sections. Following processing, the 

3D loading pattern is represented as a 24 × 5 × 5 × 7 

four-dimensional (4D) matrix. 

 

 

 

Fig. 1. Illustration of a step in converting a 2D loading pattern 

to a macroscopic cross-section matrix 

 

We considered the critical control rod position as an 

additional input. These rod positions are part of the 

results obtained from the core analysis conducted using 

the in-house code on the generated random loading 

patterns. 

Both 2D and 3D representations of the control rod 

position data initially contained the same information. 

The 5 x 5 matrix was used to depict the 2D control rod 

location. For the 3D representation, the radial 2D 

control rod position was mapped across 24 axial planes 

based on the actual insertion depth, with values ranging 

between 0 and 1, resulting in a 24 × 5 × 5 matrix. 

In the 2D representation as a 5 × 5 matrix, the control 

rod position values range from 0 to 100 (%), indicating 

the insertion ratio. A value of 100 represents the fully 

withdrawn position at the top of the core, while a value 

of 0 indicates the fully inserted position at the bottom. 

The matrix includes four regulating control rod banks: 

R1, R2, R3, and R4, each with 50% overlap. 

When converting the 2D control rod position (5 × 5) 

to a 3D representation (24 × 5 × 5), the insertion depth 

is mapped onto a 24-layer axial structure. Each axial 

node is assigned a value between 0 and 1 based on the 

insertion depth. If a control rod completely occupies an 

axial node, a value of 1 is assigned. If it just partially 

occupies the node, a value between 0 and 1 is assigned. 

If the node is vacant, a value of 0 is assigned. 

Through this process, the original 2D control rod 

representation (5 × 5) is transformed into a 3D matrix 

(24 × 5 × 5), correctly capturing the control rods’ axial 

insertion within the core. Fig. 2 depicts both the 2D 

matrix form of the control rod position representation 

and its transformed 3D matrix form. 

The output data serve as ground truth during the 

training process. Since the Axial Shape Index (ASI) is 

defined as the power generated in the lower half of the 

core less the power in the upper half of the core divided 

by the sum of these powers, we directly converted the 

3D power distribution into ASI and used it for error 

calculation.  

 

 

Fig. 2. Visualization of control rod position data: (a) 2D 

matrix representation (5x5), (b) 3D matrix representation (24 

x 5 x 5) with mapping. 

  

2.2 Constructed Models  

 

We compared five different models in this study, 

assigning them model numbers from 1 to 5. First, 

Models 1 and 2 have the identical neural network 

backbone structure. They both use a 2D loading pattern, 

which is then transformed into a 3D macroscopic cross-

section that serves as input. Both models generate ASI, 

a value with a single scalar form. However, Model 2 

takes critical control rod positions as additional input 

data.  

The number of parameters, which is widely used as a 

measure of model size, refers to the total count of 

trainable variables in the neural network, including 

weights and biases. Model 1 has 250,797 parameters, 

and Model 2 has 251,817. 

Despite sharing the same backbone structure, Model 

2 has a slight variation in parameter count due to the 

additional layer required to process the (5,5) control rod 

input. Table I summarizes the inputs, outputs, and the 

number of parameters for Models 1 and Model 2. 

 

Table I: Input and Output Shape of the Model 1 and Model 2 

 
Model 1 

(baseline, 2D 

loading pattern) 

Model 2 
(2D loading 

pattern) 

# of Parameters  250,797 251,817 

1st Input shape (5, 5, 7) (5, 5, 7) 
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2nd Input shape - (5, 5) 

Output shape (1) (1) 

 

 

Fig. 3. Shared backbone network architecture of Model 1 and 

Model 2 

 

Models 3, 4, and 5 utilize a 3D loading pattern, 

which is then transformed into a 4D macroscopic cross-

section with a shape of (24, 5, 5, 7) as input. These 

models share the backbone structure of Model 3, which 

differs from Models 1 and 2.  

 

Table II: Input and Output Shape of the Model 3, 4 and 5 

 
Model 3 

(3D loading 

pattern) 

Model 4 
(3D loading 

pattern) 

Model 5 
(Fine tunned, 

3D loading 

pattern) 

# of 

Para-

meters  
1,901,002 1,960,802 1,969,379 

1st 

Input 

shape 
(24, 5, 5, 7) (24, 5, 5, 7) (24, 5, 5, 7) 

2nd 

Input 

shape 
- (24, 5, 5) (24, 5, 5) 

Output 

shape 
(24, 5, 5) (24, 5, 5)  (1) 

 

Model 3 has 1,901,002 parameters and requires no 

more input beyond the macroscopic cross-section data. 

The model generates assembly-wise 3D power 

distribution in the shape of (24 × 5 × 5). The 3D power 

distribution is then converted to a single scalar value of 

ASI. 

Model 4 is based on Model 3 but includes additional 

input representing control rod positions, with the shape 

of (24, 5, 5). This additional input contains the same 

information as that Models 2, but in a different format. 

Extra layers were added to process this new input, 

which resulted in a slight increase in the number of 

parameters to 1,960,802 over Model 3. Similarly to 

Model 3, Model 4’s output of 3D power distribution is 

likewise converted into a single scalar ASI value. 

Model 5 is a fine-tuned variant of Model 4’s 

backbone structure. Fine-tuning is the process of 

adapting a pre-trained model with already optimized 

weights to a similar but distinct task. We fine-tuned 

Model 4, which was originally trained to predict the 

assembly-wise 3D power distribution, by modifying its 

structure to predict ASI. After these modifications, we 

retrained the model (Model 5) using a dataset that 

includes ASI values as output data. Model 5 uses the 

same input as Model 4 but differs in that it predicts a 

single scalar value as its output. Due to the additional 

layers used to construct the fine-tuned model, the 

number of parameters increased to 1,969,379. Table II 

provides summary on the input, output, and the number 

of parameters for Models 3, 4 and 5. 

 

 

 

Fig. 4. Shared backbone network architecture of Models 3, 4 

and 5. 

3. Results 

 

All models were regression models designed to 

predict specific values based on the input data. A total 

of 37,532 data points (loading patterns) were used. Of 

these, 32,089 were used for training, 3,754 for testing, 

and 1,689 for validation during the training process. All 

models were trained with a learning rate of 1e-4 and 

Mean Squared Error (MSE) as the loss function. No 

batch size was assigned, and training was conducted for 

a total of 150 epochs. 

Since the test dataset (3,754 loading patterns) was 

processed in one batch, only the average prediction 

speed could be measured. Models 1 and 2 achieved a 

prediction speed of 1 ms for the 3,754 loading patterns, 

whereas Models 3, 4, and 5 required 1 second on the 

computational server detailed in Table III. As prediction 

and training speeds are typically correlated with model 

size (parameter count and complexity), the slower 

prediction speed of Models 3, 4, and 5, relative to 

Models 1 and 2, is consistent with their larger size. The 

errors, standard deviations, and average calculation 

speeds for the predictions of each model are 

summarized in Table IV. 

 To evaluate model performance, scatter plots were 

created showing the ideal line (representing the actual 

data) and the predicted values (see Fig. 5). The density 

of points around the ideal line provides a rough 
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indication of the performance. Figures 6 to 10 

demonstrate the  error distributions (actual value - 

predicted value) for Models 1-5, including the mean, 

max, min, median, mean ± stdev, and stdev. 
 

Table III: Computational Server Specifications 

Component Specification 

CPU 
Intel Xeon Silver 4410Y (18M Cache, 2.10 

GHz - 3.30 GHz, 12C/24T, 120W) * 2 

GPU NVIDIA RTX A6000 GDDR6 48GB 

RAM 16GB 2RX4 DDR5 RDIMM 4800MHz * 2 

OS Ubuntu 22.04.05 LTS 

 

Table IV: Summary of Prediction Performance for Models 1-5 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Mean 

Abs 

Error  

1.16e-02 4.48e-03 5.73e-03 2.98e-03 2.50e-03 

Max 

Abs 
Error 

1.09e-01 2.24e-02 6.07e-02 3.15e-02 1.26e-02 

Stdev 1.50e-02 5.41e-03 7.96e-03 3.34e-03 2.52e-03 

# of 

params 
251K 252K 1.90M 1.96M 1.97M 

Avg. 

Predicti-

on Time 
0.266µs 0.266µs 0.266ms 0.266ms 0.266ms 

 

 

 

Fig. 5. Scatter plot of predicted values from Models 1-5, with 

the ideal line. 

 

Fig. 6. Distribution of Prediction Errors for Model 1. 

 

 

Fig. 7. Distribution of Prediction Errors for Model 2. 

 

 

Fig. 8. Distribution of Prediction Errors for Model 3. 

 

 

Fig. 9. Distribution of Prediction Errors for Model 4. 
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Fig. 10. Distribution of Prediction Errors for Model 5. 

 

 

4. Conclusions 

 

We used a core analysis surrogate model to compare 

the prediction performance of the Axial Shape Index 

(ASI) of a clean core. Model 1, a CNN-based model 

utilizing a 2D loading pattern developed in a previous 

study, served as the baseline model. We then compared 

the prediction performance of four additional models by 

varying the input data formats (2D and 3D) and neural 

network structures. The results showed that Model 5, 

which used both 3D loading pattern and control rod 

information as input while employing fine-tuning 

techniques, achieved the best prediction performance 

(MAE: 2.50e-03, Stdev: 2.52e-03). In comparison to 

Model 1, the MAE and standard deviation were lowered 

by 78.4% and 83.2%, respectively. 

 

 

4.1 Comparison of the Impact of Control Rod 

Information on Model Performance (‘Model 1 vs. 

Model 2’ and ‘Model 3 vs. Model 4’) 

 

The impact of control rod information on model 

performance was investigated by comparing ‘Model 1 

vs. Model 2’ and ‘Model 3 vs. Model 4’, as seen in  

Fig.11. 

In the case of 2D loading pattern models, Model 1 

(without control rod information) had a mean absolute 

error (MAE) of 1.16e-02, while Model 2 (with control 

rod information) had an MAE of 4.48e-03, resulting in 

a 61.2% reduction in prediction error. Similarly for 3D 

loading pattern models, Model 3 (without control rod 

information) had an MAE of 5.73e-03, whereas Model 

4 (with control rod information) achieved an MAE of 

2.98e-03, resulting in a 48.0% reduction in error. 

These findings show that the accuracy of ASI 

prediction in both 2D and 3D loading pattern models is 

greatly increased by including control rod information. 

 

Fig. 11. Impact of control rod information on model 

performance 

 

4.2 Effect of Fine-Tuning in 3D Models (Model 4 vs. 

Model 5) 

 

The effect of fine-tuning on model performance was 

analyzed by comparing Models 4 and 5 as shown in Fig. 

12. Both models utilized the same 3D loading pattern 

and control rod data for input. Model 5 is a fine-tuned 

variation of Model 4. As a result, the mean absolute 

error (MAE) decreased from 2.98e-03 in Model 4 to 

2.50e-03 in Model 5, indicating a 16.1% improvement 

in prediction accuracy. 

 

 

Fig. 12 Effect of fine-tuning on Model Performance (MAE) 

4.3 Comparison Between 2D and 3D Loading Patterns 

Models (‘Model 1 vs. Model 3’ and ‘Model 2 vs. Model 

4’.) 

 

The impact of loading pattern dimensionality on ASI 

prediction performance was evaluated by comparing 

‘Model 1 vs. Model 3’ and ‘Model 2 vs. Model 4’, as 

shown in Fig. 13. 

When control rod information was not included, the 

3D loading model (Model 3) had a mean absolute error 

(MAE) of 5.73e-03, which was 50.6% lower the 2D 

loading model (Model 1) at 1.16e-02. Similarly, when 

control rod information was included, the 3D model 
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(Model 4) achieved an MAE of 2.98e-03, a 33.5% 

reduction over the 2D model (Model 2), which had an 

MAE of 4.48e-03. 

These results indicate that using a 3D loading pattern 

significantly improves ASI prediction accuracy, 

regardless of whether control rod information is given.  

The improved accuracy can be attributed to several 

factors. First, the 3D models utilize the in-core 3D   

distribution, which represents the uncompressed values 

used to derive ASI. This single scalar value, in contrast, 

inherently provides less information for understanding 

the correlation between input and target data compared 

to the 3D distribution. 

Furthermore, the 3D loading pattern includes 

additional features, such as the cutback region at the top 

layer, providing more information in the input data. 

Specifically, the input and output dimensions for the 3D 

model are (24, 5, 5, 10) and (24, 5, 5), respectively, 

offering much richer information compared to the 2D 

case, where the input and output dimensions are (5, 5, 

10) and (1).  It is believed that this detailed spatial and 

dimensional information contributed to the model's 

enhancement. 

 

 

Fig. 13. Impact of the dimensionality of loading pattern on 

prediction performance (MAE) 
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