

KNS Spring Meeting 2025

Theoretical and Experimental Investigation of Radium Adsorption Mechanisms on Engineered Barrier Material

공학적 방벽 완충재의 라듐 흡착 메커니즘에 대한 이론 및 실험 연구

Author: Jaeeun Kang* and Wooyong Um 2025년 5월 22일 제주 국제컨벤션 센터

Jaeeun Kang*

Nuclear Environmental Laboratory (NEL) Division of Advanced Nuclear Engineering (DANE), POSTECH

CONTENTS

Nuclear Environmental Lab.

Introduction 0

Engineered barrier system Behavior of radionuclides from spent nuclear fuel

0 2 Experimental study

Experimental study on Ra adsorption onto buffer materials

03 Computational study

Computational study on Ra adsorption onto buffer materials

04 Conclusion Summary of this study

2025년 5월 22일 제주 국제컨벤션 센터

Introduction **Engineered barrier system**

Figure 2. Schematic illustration of sodium montmorillonite structure.

Thermo-Hydro-Mechanical-Chemical (THMC) processes

Introduction

Behavior of radionuclides from spent nuclear fuel

Various cases of barrier functions*

Scenarios based on potential loss of safety functions

this study aims to investigate the Ra adsorption on the buffer material of engineering barriers⁺. 77

⁺Kang, J., et al., Applied Surface Science, 703, 163406 (2025).

*Ref: Svensk Karnbranslehantering AB, Long-term safety for the final repository for spent nuclear fuel at Forsmark Main report of the SR-Site project, Volume III (Technical Report TR-11-01), 2011.

1,000,000 - - Ag108 — — C14 100.00 - - Cs13 Typical background radiation in Sweden — — Sr90 — — Ni63 onding to risk limi — — Am24 Most of the dose: **—** 1129 - Se7 **Ra-226** Ni59 Ra22 - Sum Tc99 - - Ag108m — — C14 - - Cs137 - - Sr90 - Pu242 — — Ni63 0.001 - - Am241 10.000 100.000 1.000.000 |129 Time (vr) - Se79 Nb94 Ni59 Ra226 Pb210 ____ Pu240 Tc99 Cs135 ····· Sn126 ----- Cl36 ----- Pu242 0.001 Am243 1,000 10,000 100,000 1,000,000 Time (yr)

Near and Far-field mean annual effective dose

Figure 3. Mean annual effective dose in near and far fields from spent nuclear fuel under an extreme scenario for long-term safety assessment.

By integrating computational and experimental approaches,

Experimental study

Materials and methods

Materials and methods

- Adsorbent: Bentonil-WRK
- Converted to Na-exchanged MMT through treatment with a 1 M NaNO_{3.}
- Contact time: 72 hours
- Solution to solid ratio: 0.01 g/mL for Ra and Ba.
- Analytics instruments: LSC and ICP-MS

Characterization of Adsorbent Materials

Table 1. Mineralogical composition of raw Bentonil.

Sample No.	Montmorillonite	Albite	Quartz	Cristobalite
1	76.8	9.6	-	13.7
2	76.7	8.7	1.4	13.3
3	77.0	9.4	-	13.6

Batch adsorption experiment

Radioactive Isotope (Radium-226)

Batch adsorption experiment

- 1. Isotherm studies were conducted at pH 6.7 using solutions with radioactivity ranging from 5-50 Bq/mL.
- The effect of pH on Ra adsorption was evaluated using
 ²²⁶Ra (15 Bq/mL) across a pH range of 2 to 11.

• Detection efficiency (ϵ)

Liquid scintillation counter

$$\varepsilon = \frac{N_{net}}{A_{Ra226}(1 - e^{-\lambda t})}$$

Due to the decay of ²²⁶Ra into its daughter nuclides (²²²Rn, ²¹⁸Po, and ²¹⁴Po), the detection efficiency can reach 300%.

where N_{net} is net count rate (cps) and A_{Ra226} is ²²⁶Ra radioactivity (Bq), λ is decay rate of ²²²Rn (d⁻¹), and t is time period from separation to measurement (d), respectively.

Equation 1. Detection efficiency(ε)

Batch adsorption experiments using Ba (from BaNO₃) as a surrogate for Ra were performed to extend the Ra adsorption study, including dosage, kinetics, isotherm, pH, and ionic strength effects. Experimental study

Results and discussions

Figure 7. (a) Linear isotherm model and (b) Langmuir and Freundlich models of Ra adsorption on Na-Bentonil.

(a) 30 Isotherm **25** · 20 $Q_e \ (mg/g)$ 15 Isotherm 5 \mathbb{R}^2 Q_{max} (mg/g) 200 400

Bentonil at different pH.

Experimental Interpretation

Figure 9. (a) Langmuir and Freundlich models of Ba adsorption on Na-Bentonil; (b) Ionic strength for Ba on Na-

Outer-sphere complexes, stabilized via electrostatic forces across the Stern layer, exhibit pronounced sensitivity to ionic strength perturbations.

 \star At high pH (pH > 9),

- Increased OH⁻ concentration leads to more OH-water complexes.
- Hydrated OH⁻ may modify surface charge distribution.

"To further confirm the adsorption mechanism,

DFT calculations were performed."

Computational methodology

Computational details

- 1. Exchange-correlation functional: PBE with DFT-D3 method.
- 2. For geometry, cutoff of 400 eV, EDIFF of 10^{-6} eV.
- 3. For SCF, cutoff of 600 eV, EDIFF of 10^{-6} eV.
- 4. For bulk, Monkhorst–Pack method with a $6 \times 4 \times 3$ kpoints.
- 5. For hydrate system, $15 \times 15 \times 15 \text{ Å}^3$ unit cell with Γ -point sampling.

Bulk structure and Slab model

- Optimized lattice parameters of MMT a = 5.03 Å, b = 8.68 Å, c = 9.81 Å, α, $γ = 90.00^{\circ}$ and $β = 98.55^{\circ}$
- Lattice parameters of MMT from Exp. a = 5.18 Å, b = 8.98 Å, c = 10.10 Å α , $\gamma = 90.00^{\circ}$ and $\beta = 99.6^{\circ}$

Figure 10. Schematic of the MMT structure: (a) optimized unit cell; (b) unit cell expansion for the (010) slab model.

Radium in aqueous system

 \mathbb{Q} Select only the water molecules that entered the first hydration cell

Adsorption energy

$$\Delta E_{ads} = E_{total} - (E_{sl}$$

 \therefore A negative ΔE_{ads} indicates that the adsorption process is thermodynamically favorable

 $_{lab} + E_{Ra(Ba)-complex})$

where E_{total} represents the total energy of the system following adsorption, while E_{slab} and E_{Ra(Ba)-complex} correspond to the energies of the MMT slab model and the hydrated or hydroxyl-hydrated Ra- or Ba-complex, respectively.

Results and discussions

spatial range perpendicular to the surface Si-O.

Radium Adsorbed on MMT (010) surface

perpendicular redistribution of electrons between

***** Charge density difference (CDD)

Results and discussions

*Ref: Yamaguchi, A., et al., Extended X-ray absorption fine structure spectroscopy measurements and ab initio molecular dynamics simulations reveal the hydration structure of the radium(II) ion. iScience, 25(8), 104763, 2022.

Results and discussions

Projected Density of States (PDOS)

Figure 17. The projected density of state (PDOS) before and after adsorption. Plotted as PDOS of Si multiplied by 5. (a and b) $Ra(OH)_2(H_2O)_4$ adsorbed on (001) basal surface. (c and d) $Ra(OH)_2(H_2O)_4$ adsorbed on (010) edge surface. The Fermi energy was set to zero for all PDOS plots.

PDOS Interpretation

 \star For the (001) surface with Ra(OH)₂(H₂O)₄

- After adsorption: •

\star For the (010) surface with Ra(OH)₂(H₂O)₄

- After adsorption:
 - - \rightarrow indicates hybridization.
 - -

Before adsorption: Minimal overlap between Si 3s/3p and O_{OH1} 2s orbitals.

- Complete overlap between Si 3s/3p and O_{OH1} in the -29 to -24.5 eV range,

indicating strong chemical bonding.

Ra 6p orbitals shift to lower energies and overlap with O_{OH1}

 \rightarrow suggests enhanced stability.

- Ra 5d orbitals split into two peaks near the Fermi level, suggesting significant

involvement in bonding, possibly due to relativistic effects.

Before adsorption: Ra orbitals do not participate in bonding;

only AI–O overlaps are observed.

Slight overlap of Ra 6p with Al and O_{SR} orbitals in the 1.1–6.0 eV range

Ra 5d orbitals show splitting near 3.25 eV, confirming their contribution to bonding.

A weak overlap of Ra 6p with Al and O orbitals is observed in the -5 to 3.2 eV range,

implying formation of bonding interactions not present before adsorption.

Theoretical and Experimental Investigation of Radium Adsorption Mechanisms on Engineered Barrier Material

Summary of this study

This study integrated DFT calculations and batch adsorption experiments to understand how Ra interacts with MMT surfaces.

Key findings include:

- $Ra(OH)_2(H_2O)_4$ showed the most stable adsorption form on both surfaces, particularly strong on the (010) surface due to interactions with surface hydroxyl groups.
- Ra²⁺ and [Ra(H₂O)₈]²⁺ mostly form weaker outer-sphere complexes through electrostatic or hydrogen bonding.
- Batch adsorption experiments showed pH-dependent adsorption, with higher Ra uptake at high pH, supporting the theoretical prediction that Ra • adsorption is stronger on deprotonated (high pH) surfaces.
- **PDOS and charge density analyses** confirmed that Ra binding is stabilized through orbital overlap and charge transfer, especially on hydroxyl-rich • surfaces.

Overall, these findings demonstrate that the edge surface plays a crucial role in Ra retention. Under high-pH conditions induced by cement and surrounding rock, Ra is expected to exhibit enhanced adsorption affinity, thereby improving its retention in deep geological repositories.

KNS Spring Meeting 2025

Thank you for your kind attention Zada attention 경청해 주셔서 감사합니다. Zada attention

Jaeeun Kang*

*jenny94@postech.ac.kr

Nuclear Environmental Laboratory (NEL) Division of Advanced Nuclear Engineering (DANE), POSTECH

2025년 5월 22일 제주 국제컨벤션 센터