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1. Introduction 

 

The neutron transport equation (NTE) governs 

neutron behavior in materials and is essential for 

predicting neutron flux in reactor cores. Due to its 

seven variables, solving NTE analytically is highly 

complex, necessitating numerical methods such as 

deterministic (e.g., finite difference, MOC, spherical 

harmonics) and non-deterministic (Monte Carlo) 

approaches. However, these methods face challenges 

like high computational costs, implementation 

complexity, and sensitivity to dimensionality. 

To address these issues, this study introduces a deep 

learning-based approach using Physics-Informed 

Neural Networks (PINN). Unlike traditional methods, 

PINN is mesh-free, mitigating the curse of 

dimensionality and adapting well to complex 

geometries while providing continuous solutions 

without requiring high-quality meshes. 

This study presents Adaptive Dynamic Adjustment 

PINN (ADA-PINN), a newly developed model for 

solving NTE. In conventional PINN, as the geometry 

becomes more complex, numerous loss terms arise, 

requiring users to manually set weights for each loss 

function to achieve optimal total loss. However, as the 

number of losses increases, it becomes more difficult 

for users to grasp the priority of losses. Therefore, we 

developed an ADA technique that utilizes the second 

derivative of the loss function using curvature-based 

loss adjustment. As the result, ADA-PINN overcomes 

this limitation by automatically adjusting loss weights 

during training, leading to more efficient and stable 

convergence without manual hyperparameter tuning. 

Additionally, ADA-PINN applies optimal domain 

decomposition and multi-group equation solving. It 

also incorporates a training dataset repositioning 

technique to reduce errors near boundaries, further 

enhancing computational efficiency and accuracy. 

These advancements establish ADA-PINN as a 

promising alternative for solving NTE compared to 

conventional numerical methods. 

The paper is structured as follows: Section 2 

introduces NTE, ADA-PINN, and the training 

techniques used; Section 3 presents test cases for 1D 

and 2D NTE problems, comparing ADA-PINN with 

existing data; and Section 4 summarizes key 

conclusions. 

2. Methods 

 

The neutron transport equation (NTE) differs from 

the neutron diffusion equation (NDE), requiring 

distinct PINN approaches. As an integro-differential 

equation, NTE involves complex integrations and 

directional-energy relationships, leading to intricate 

matrix transformations. 

Its non-smoothness near interfaces introduces 

errors, while angular discretization causes the Ray 

effect, reducing accuracy. To address these challenges 

in multi-energy NTE, this study applies four key 

techniques. This section provides an overview of NTE 

and PINN, explains the model structure, and details 

the proposed techniques. 

 

2.1 Neutron transport equation 

 

The multi-group NTE is expressed as follows:  

 
𝜕𝜓𝑔

𝜕𝑡
 + Ω⃗⃗ ∙ ∇𝑟 𝜓𝑔  + ∑ 𝜓𝑔  =  𝑄𝑔(𝜓𝑔 )𝑡,𝑔     (1) 

 

where 𝜓𝑔 (𝑟 , Ω⃗⃗ , 𝑡)represents the spatial vector 𝑟 , the 

directional vector  Ω⃗⃗ , and the time variable 𝑡 , 

defining a specific energy group, 𝑔 . ∑ 𝑟 𝑡,𝑔  is the 

macroscopic total cross-section for a given energy 

group, 𝑔 , and 𝑄𝑔(𝜓)  represents the source term, 

which includes the scattering term, fission term, and 

external source. Fig. 1. Direction variable in the unit 

circle. The direction variable Ω⃗⃗  and its 

components μ, η and 𝜉  in unit sphere is illustrated 

with Fig.1. μ, η and 𝜉  are projections of Ω⃗⃗  on 

the 𝑥, 𝑦 and 𝑧 axes, respectively. 

 
 
Fig. 1. Direction variable in the unit circle. [1] 
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In this study, scattering is assumed to be isotropic, 

and the fission term is neglected. Therefore, the source 

term is given as follows: 

 

𝑄𝑔(𝜓𝑔  )  =  
𝑄𝑒𝑥𝑡,𝑔 + ∑ ∑ 𝜙𝑔′𝑠,𝑔′⟶𝑔

𝐺
𝑔′=1

4𝜋
 , 𝜙𝑔 = ∫ 𝜓𝑔 𝑑

𝑆
Ω⃗⃗   (2)  

                           

Here, 𝑄𝑒𝑥𝑡,𝑔  represents the external source term, 

which is independent of 𝜓𝑔 in group 𝑔 . The term 

∑ 𝑟 𝑠,𝑔′⟶𝑔  denotes the scattering cross-section, and 

𝜙𝑔 corresponds to the integral of 𝜓𝑔  over all 

directions. 

 

2.2 Neural networks 

 

The Adaptive Dynamic Adjustment PINN (ADA-

PINN) is a multi-layer feed-forward neural network 

that dynamically adjusts learning parameters.  

Building upon the concept of Physics-Informed 

Neural Networks (PINNs) proposed in Raissi et al. [2], 
a new variant called ADA-PINN has been developed 

by incorporating an adaptive weighting strategy 

(ADA) into the original framework. Neural networks 

process inputs through multiple hidden layers to 

achieve non-linear mappings for output predictions. 

Common activation functions in machine learning 

include sigmoid, hyperbolic tangent (tanh), and ReLU 

functions. Based on previous research by Xie et al. 

(2023) [3], the hyperbolic tangent function 

demonstrated superior performance, and thus was 

chosen for all two case studies in this research. Multi-

group NTE is calculated based on single-group 

problems, and this section explains how ADA-PINN 

is applied to solve single-group NTE problems. 

ADA-PINN optimizes single-group NTE 

calculations using loss functions and tuning 

parameters. During this process, tuning parameters, 

weights, and biases are defined. The schematic 

diagram of ADA-PINN is shown in Fig. 2. The 

process begins with the construction of the NN(Neural 

Network), followed by inputting spatial vectors, 

directional vectors, and time variables, which pass 

through the multi-layer network to generate an output. 

The output represents 𝜓 at the corresponding point, 

expressed as: 

 

𝜓(𝑟 , Ω⃗⃗ , 𝑡) = 𝑁𝑁(𝑟 , Ω⃗⃗ , 𝑡, 𝑝 )         (3) 

 

 After this step, we can get values of 𝜕𝑡, ∇𝑟 , 𝑄 from 

neural networks. By substituting these values into the 

governing equation, the ideal condition is for the 

equation's value to be zero. This condition defines the 

loss function: 

 

𝑙𝑜𝑠𝑠 =  
𝜕𝜓𝑔

𝜕𝑡
 +  Ω⃗⃗ ∙ ∇𝑟 𝜓𝑔  + ∑ 𝜓𝑔 − 𝑄𝑔(𝜓𝑔 ) 𝑡,𝑔  (4) 

 

However, since this method approximates the 

solution iteratively, it never exactly reaches zero. 

Instead, the loss function represents the deviation 

from zero, which is minimized during training. 

Several loss terms are defined, but only the physics-

based loss derived from the governing equation is 

mentioned here; additional loss functions will be 

introduced in Section 2.6. The training set comprises 

randomly sampled discrete points within the 

computational domain, each associated with velocity 

vectors. If the size of the training set is 𝑁𝑡𝑟𝑎𝑖𝑛, the loss 

function derived from 𝐿2𝑛𝑜𝑟𝑚 is defined as: 

 
𝑙𝑜𝑠𝑠𝑡𝑟𝑎𝑖𝑛(𝑝 ) =

 ∑ (

𝜕𝜓𝑔

𝜕𝑡
(𝑟 𝑖 , Ω⃗⃗ 𝑖,𝑡𝑖, 𝑝 ) + Ω𝑖

⃗⃗⃗  ⃗ ∙ ∇𝑟 𝜓𝑔(𝑟 𝑖 , Ω⃗⃗ 𝑖,𝑡𝑖 , 𝑝 )

+ ∑ (𝑟 )𝜓𝑔(𝑟 𝑖 , Ω⃗⃗ 𝑖,𝑡𝑖, 𝑝 ) −  𝑄𝑔(𝜓𝑔(𝑟 𝑖 , Ω⃗⃗ 𝑖,𝑡𝑖, 𝑝 ) )𝑡,𝑔

)

2

𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1  (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Schematic diagram of ADA-PINN for NTE 
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where i denotes the discrete points in the training 

set, and tuning parameter 𝑝  is used to minimize the 

loss toward zero. The total loss combines multiple loss 

functions, each assigned a different weight based on 

its significance. Training iterations include two main 

optimization steps, with loss weighting dynamically 

adjusted during training. The detailed explanation of 

dynamic loss weighting is provided in Section 2.3. 

The optimization of the loss function in machine 

learning is typically solved using first-order gradient 

descent methods such as Adam (Kingma and Ba, 2014) 

[4] or second-order methods like LBFGS (Liu and 

Nocedal, 1989) [5]. In this study, Adam was used. 

 

2.3 Adaptive dynamic adjustment training for losses 

 

Adaptive Dynamic Adjustment Training for Losses 

(ADATL) dynamically adjusts the loss function's 

contribution during training to enhance learning 

efficiency. Traditional loss functions remain fixed 

throughout training, which can lead to unstable 

learning rates—some loss terms may decay too 

quickly or too slowly. To address this issue, a 

curvature-based loss adjustment technique is 

introduced. This technique analyzes the curvature of 

the loss function and adjusts its weight accordingly: 

reducing the weight when the loss changes rapidly and 

increasing it when the loss changes slowly. This 

ensures balanced learning across different training 

stages.  

The core principle of curvature-based loss 

adjustment is utilizing the second-order derivative 

(curvature) of the loss function. A high curvature of 

the loss function indicates that the loss value is 

changing rapidly, which may cause the model to 

overreact and lead to unstable learning. Conversely, 

when the curvature is low, it suggests that learning has 

stagnated in that region, requiring the enhancement of 

the loss influence to encourage more active learning. 

This can be mathematically expressed as follows, 

where the loss weight 𝑤𝑖 is defined as: 

 

𝑤𝑖 = 
1

1+𝛼|∇2𝐿𝑖|
     (6) 

 

where: 

 - ∇2𝐿𝑖  represents the curvature of the loss function, 

 - α is the adjustment coefficient. 

Higher curvature ∇2𝐿𝑖  (rapid loss changes) results 

𝑤𝑖  in a lower , while lower curvature (slow loss 

changes) increases 𝑤𝑖 . This prevents the model from 

overreacting to abrupt loss variations while 

reinforcing learning in stable regions. 

This method enhances learning stability and 

optimizes convergence speed. Conventional deep 

learning training suffers from excessive fluctuations 

in learning rates when loss functions change rapidly. 

Curvature-based adjustment prevents extreme 

reactions during sharp loss changes while accelerating 

convergence in slow-learning regions. Additionally, 

this approach mitigates local minimum traps by 

dynamically adjusting loss weighting, increasing the 

likelihood of achieving a global minimum. 

Additionally, curvature-based loss adjustment can 

demonstrate strong performance in multi-loss learning 

environments. In models where multiple loss 

functions are combined, certain losses may become 

disproportionately large or small compared to others, 

leading to imbalanced training. In the case of the 

neutron transport equation (NTE), loss functions are 

not only derived from the governing equation but also 

from various boundaries and initial conditions, and the 

number of these losses increases as the geometry 

becomes more complex. By applying curvature-based 

loss adjustment, the weights of each loss function can 

be dynamically adjusted based on their rate of change, 

enabling more balanced learning. 

 

2.4 Rearrangement of training set 

 

In the process of determining the training dataset, 

ADA-PINN follows a mesh-free approach, making it 

free from conventional constraints. ADA-PINN 

randomly samples data points, where in the case of the 

neutron transport equation (NTE), these random 

values include spatial vectors, directional vectors, and 

time variables. However, when multiple models are 

used, the fit between models must be guaranteed at the 

physical boundary, which requires denser allocation 

of data points near the region, as used in existing 

numerical solution techniques. 

The reason for this is that while a single model can 

produce smooth results, NTE solutions only maintain 

continuity and can still be non-smooth in certain 

regions. To address this, dataset rearrangement was 

applied. Although it is possible to densely allocate 

data points across the entire domain for training, this 

approach is computationally inefficient. Instead, the 

goal is to strategically assign more data points to 

critical regions where learning needs to be emphasized, 

thereby achieving maximum efficiency with minimal 

computational cost. 

In this study, this technique was applied in the final 

case to enhance the efficiency of the training process. 

 

2.5 Multi-group iteration 

 

In the case of multi-group NTE, the source term 

includes neutrons scattered from other energy groups. 

That is, when there are two groups, they are coupled 

through an integral-differential equation. This can be 

approximated using the source iteration method 

(Hébert, 2010) [6], which is a conventional numerical 

approach. 

The process of applying this method to PINN is as 

follows: First, each source term is initially assigned a 
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random value. Then, the governing equation for each 

group is solved using the techniques described in 

Sections 2.2 and 2.3. Subsequently, the updated 

source term is obtained, and this process is repeated in 

each training iteration until convergence is achieved. 

 

2.6 Area decomposition 

 

As geometrical complexity increases, the benefits 

of training data rearrangement diminish. A viable 

alternative is area decomposition, inspired by Wang et 

al. (2022) [7], who applied PINN to solve the neutron 

diffusion equation (NDE). Unlike NDE, NTE lacks a 

second-order derivative term, so continuity conditions 

for first-order derivatives do not apply. The loss 

function incorporating inter-region continuity is 

defined as follows: 

 

𝐿𝑜𝑠𝑠 =  ∑ 𝑙𝑜𝑠𝑠𝑡𝑟𝑎𝑖𝑛,𝑖
𝑀
𝑖=1 + ∑ 𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖

𝑃
𝑖=1 +

∑ 𝑙𝑜𝑠𝑠𝐵𝐶,𝑖
𝑅
𝑖=1      (7) 

 

where M is the number of regions, P is the number of 

interfaces, 𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖  represents inter-region 

continuity error, R is the number of boundary 

conditions, and 𝑙𝑜𝑠𝑠𝐵𝐶,𝑖  represents boundary 

condition errors. The 𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖  is given by:  

 

𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖 = ∑ (𝜓𝑚(𝑟 𝑗 , Ω⃗⃗ 𝑗,𝑡𝑗 , 𝑝𝑗⃗⃗  ⃗) −
𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖

𝑗=1

𝜓𝑛(𝑟 𝑗, Ω⃗⃗ 𝑗,𝑡𝑗 , 𝑝𝑗⃗⃗  ⃗))
2 (8) 

 

where 𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖  denotes the number of discrete 

points at the interface, and 𝜓𝑚  and 𝜓𝑛  represent 

𝜓 values on either side of the interface. Similarly, 

boundary condition loss 𝑙𝑜𝑠𝑠𝐵𝐶,𝑖  is defined as: 

 

𝑙𝑜𝑠𝑠𝐵𝐶,𝑖 =  ∑ (∇𝜓𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦(𝑟 𝑗 , Ω⃗⃗ 𝑗,𝑡𝑗, 𝑝𝑗⃗⃗  ⃗))
2𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖

𝑗=1

+∑ (𝜓𝑖𝑛𝑙𝑒𝑡(𝑟 𝑗 , Ω⃗⃗ 𝑗,𝑡𝑗, 𝑝𝑗⃗⃗  ⃗))2
𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒,𝑖

𝑗=1
 

(9) 

 

For ∇𝜓𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦(𝑟 𝑗 , Ω⃗⃗ 𝑗,𝑡𝑗 , 𝑝𝑗⃗⃗  ⃗) , by using Dirichlet 

boundary conditions, where the gradient should be 

zero, the loss is minimized as the gradient approaches 

zero. For 𝜓𝑖𝑛𝑙𝑒𝑡(𝑟 𝑗 , Ω⃗⃗ 𝑗,𝑡𝑗 , 𝑝𝑗⃗⃗  ⃗), from vacuum boundary 

conditions, where 𝜓𝑖𝑛𝑙𝑒𝑡  values should be zero at the 

boundary. To be more specific, there are zero neutrons 

coming from outside to geometry, so the loss is 

defined as above. 

 

2.7 Random uniform dataset for ray effect 

 

The ray effect that occurs when solving the NTE 

arises from directional bias in fixed-direction methods 

such as s16 and s32, where information is 

concentrated along specific directions. To mitigate 

this issue, using random uniform sampling in PINN 

can help distribute the solution more evenly by 

reducing directional bias. While traditional methods 

confine data flow to specific directions, exacerbating 

the ray effect, random sampling allows for learning 

from various directions, improving generalization 

performance and smoothing the loss landscape, 

leading to more stable gradient updates. However, 

random sampling alone does not completely resolve 

the problem, and strategies such as proper boundary 

condition handling and importance sampling must 

also be considered. For instance, when dealing with 

boundary conditions like vacuum conditions, where 

neutrons only enter from specific directions, the range 

of random sampling values can be adjusted to ensure 

that only outgoing neutrons exist at the boundary. 

 

3. Results and discussion 

 

In this study, two cases were analyzed, where ADA-

PINN was applied to NTE and compared with 

conventional numerical methods that utilize iteration. 

Case 1 was applied to the 1D-1G Reed’s problem 

(William, 1971) [8], while Case 2 was applied to the 

2D-2G TWIGL(Hoffman and Lee, 2016) [9] problem. 

For both cases, parallel computation was performed 

using a single NVIDIA GeForce 4060 card. The 

structure of the neural network and the training set size 

are listed in Table 1. 

 
Table 1. Summary of important parameters used in cases. 

 Number of  
hidden 
layers 

Number of  
neurons in 
each 
layer 

Training 
set size 

Case 1 3 20 1000 
Case 2 12 512 14000 

 

3.1 Case 1: 1D transport problem with scattering 

 

Case 1 is a one-dimensional mono-energy neutron 

transport equation (NTE) problem that includes a 

scattering term. In this case, Eq. (1) can be simplified 

as follows: 

 

𝜇
𝜕𝜓

𝜕𝑥
+ ∑ 𝜓𝑡 =  

𝑄𝑒𝑥𝑡+∑ 𝜙𝑠

4𝜋
                 (10) 

 

Here, 𝜓(𝑥, 𝜇 ) represents the neutron angular flux, 

while 𝜙  denotes the neutron scalar flux, which is 

defined from the equation (2). 

This case study was inspired by Reed’s problem, 

which is commonly used as a benchmark test problem 

for transport codes. The structure consists of 

heterogeneous materials, including strong absorbers, 

vacuum regions, and scattering regions, as illustrated 

in Fig. 3. 
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Fig. 3 Multi-region transient Reed's problem 

 

These regions are useful for testing various aspects 

of numerical discretization. For example, the vacuum 

region presents challenges when applying the second-

order form of the transport equation. 

By applying the boundary conditions (BC) 

provided in the problem, we can rewrite the BC as: 

 

∇𝜓(𝑥 = 0, 𝜇) = 0           (11) 

𝜓(𝑥 = 8, 𝜇 < 0) = 0         (12) 

 

In this case, there are a total of five regions, so five 

separate models were assigned accordingly. 

Additionally, training set rearrangement was applied 

at the boundaries between regions to generate data 

points, as shown in Fig. 4. In this context, the x-axis 

represents the position of a neutron within a one-

dimensional geometry, while the y-axis indicates the 

angular direction of the neutron. 

 

 
Fig. 4. Train set of Case 1 

 

The comparison between the results obtained using 

the above dataset and the dynamically weighted total 

loss assignment and the reference values is shown in 

Fig. 5. Additionally, the loss history recorded during 

training is presented in Fig. 6. 

 
Fig. 5 Predicted solution comparison between Reference & 

ADA-PINN 

 

 
Fig. 6 Loss history of ADA-PINN for Case1 

 

For the 1D-1G case, a comparison between the 

reference and ADA-PINN results shows that high-

accuracy results were obtained despite using a 

relatively small number of assigned nodes and hidden 

layers. 

Examining the loss history, fluctuations in the loss 

values begin around the 10,000th iteration. However, 

the minimum loss continues to decrease steadily, 

indicating that the training process proceeded 

normally. By approximately the 50,000th iteration, the 

loss converges to 10⁻⁴. The training time took a total 

of 6 hours and 32 minutes. And when using the 

completed learning model, it took 0.32 seconds to 

derive the result. 

 

3.2 Case 2: 2D transport problem with multi-groups 

 

Case 2 primarily aims to validate ADA-PINN in a 

2D multi-group neutron transport problem. This 

problem involves a stationary neutron transport 

equation for a two-group system with absorption and 

scattering materials. In this case, the multi-group 

iteration described in Section 2.5, the area 

decomposition method discussed in Section 2.6 and 
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random uniform dataset for ray effect described in 

Section 2.7 are applied. 

Eq. (1) for this case can be simplified as follows: 

 

{
𝜇

𝜕𝜓1

𝜕𝑥
+ 𝜂

𝜕𝜓1

𝜕𝑦
+ Σ𝑡,1𝜓1 =

𝑄𝑒𝑥𝑡,1+Σ𝑠,1⟶1𝜙1+Σ𝑠,2⟶1𝜙2

4𝜋

𝜇
𝜕𝜓2

𝜕𝑥
+ 𝜂

𝜕𝜓2

𝜕𝑦
+ Σ𝑡,2𝜓2 =

𝑄𝑒𝑥𝑡,2+Σ𝑠,2⟶1𝜙1+Σ𝑠,2⟶2𝜙2

4𝜋

     

(13) 

 

Here, 𝜓1 and 𝜓2 represent the neutron angular flux 

for the fast group and thermal group, respectively, 

while 𝜙1and 𝜙2  denote the neutron scalar flux for 

the fast and thermal groups. 

Case 2 was inspired by TWIGL. The geometry and 

boundary conditions for this problem are illustrated in 

Fig. 7, while the physical parameters are listed in 

Table 2. In the steady-state condition of TWIGL, the 

external source term 𝑄𝑒𝑥𝑡,1 is shown in Fig. 8, and 

𝑄𝑒𝑥𝑡,2=0. 

 
Fig. 7 Geometry of Case 2. 

 

Table 2. Physical parameters of Case 2. 
Region Group, 

g 
𝚺𝒕(𝒄𝒎

−𝟏) 𝚺𝒔,𝒈⟶𝒈(𝒄𝒎−𝟏) 𝚺𝒔,𝒈⟶𝒈′(𝒄𝒎
−𝟏) 

1 1 0.238095 0.218095 0.01 

 2 0.83333 0.68333 0 

2 1 0.238095 0. 218095 0.01 

 2 0.83333 0.68333 0 

3 1 0.25641 0.23841 0.01 

 2 0.66666 0.616667 0 

 

 
Fig. 8 𝑄𝑒𝑥𝑡,1 of Case 2. 

 

The solutions obtained using ADA-PINN and the 

Finite Element Method (FEM)-based BenchMark 

Solution(BMS) are shown in Fig. 9 and Fig. 10. For 

further comparison, the error values between BMS 

and ADA-PINN within the given geometry are 

presented in Fig. 11 For errors compared to BMS, 

ADA-PINN achieved an average error of 0.0017 for 

the fast group and 0.0011 for the thermal group. From 

these figures, it is evident that the ADA-PINN 

solution closely matches the FEM solution. This 

demonstrates that the proposed ADA-PINN 

effectively and flexibly simulates multi-group 

heterogeneous problems with high accuracy. The 

training time took a total of 18 hours and 29 minutes. 

And when using the completed learning model, it took 

1.84 seconds to derive the result. 

 

Fig. 9 Global comparison of 𝜙1 in Case 2. 

Fig. 10 Global comparison of 𝜙2 in Case 2. 
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Fig. 11 Difference values between ADA-PINN and BMS 

over the geometry 

 

4. Conclusions 

 

In this study, the Adaptive Dynamic Adjustment 

Physics-Informed Neural Network (ADA-PINN) was 

used to numerically analyze the Neutron Transport 

Equation (NTE). To address the limitations of 

conventional deterministic and non-deterministic 

methods, a deep learning-based PINN approach was 

applied, incorporating Adaptive Dynamic Adjustment 

for Training Losses (ADATL) and a Training Set 

Rearrangement technique to enhance computational 

efficiency and accuracy. 

For the first case study (Case 1), ADA-PINN was 

tested on the 1D-1G Reed’s Problem, demonstrating 

high accuracy with fewer training nodes and hidden 

layers than traditional numerical methods. The 

dynamic loss weighting adjustment technique 

improved training stability and convergence speed, as 

confirmed by tracking loss function evolution. 

In the second case study (Case 2), ADA-PINN was 

applied to the 2D-2G TWIGL problem, solving the 

multi-group neutron transport equation. The Multi-

group Iteration and Area Decomposition techniques 

enabled a flexible computational approach while 

maintaining accuracy comparable to the FEM-based 

BMS method. The Fast and Thermal Groups achieved 

average error rates of 0.0017 and 0.0011, respectively, 

confirming the method’s high computational speed 

and accuracy. 

This study contributes to the field by mitigating the 

Ray-effect issue of conventional numerical methods, 

improving training stability and convergence speed 

with ADATL, reducing boundary errors through 

training dataset rearrangement, and applying area 

decomposition for solving multi-group equations and 

complex geometries with greater precision. 

Furthermore, the automated loss weighting 

adjustment technique eliminates the need for manual 

hyperparameter tuning, enhancing optimization 

efficiency. 

Future research will focus on extending ADA-

PINN to transient multi-group neutron transport 

problems in complex geometries for real reactor 

simulations. Additional verification is needed for 

cases with severe Ray-effects, such as anisotropic 

environments, and the proposed loss adjustment and 

dataset rearrangement techniques should be applied to 

various physical models to assess their generality and 

applicability. 
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