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Results and Discussion

ADA-PINN: Adaptive Dynamic Adjustment Physics-Informed Neural Network Case 1: 1D transport problem with scattering(Reed’s Problem)

for the neutron transport equation (NTE)  Benchmark Purpose: Commonly used to evaluate and validate neutron
Dynamic loss weighting (ADATL) automatically balances competing PDE and transport solvers

boundary losses * Geometry: Features heterogeneous material layout
Benchmarked on 1D Reed’s and 2D TWIGL problems > matches reference  Material Types: Includes strong absorbers, vacuum regions, and

solutions scattering zones

. * Challenge: Tests solver performance in complex multi-material
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* |ntroduce ADA-PINN, a mesh-free PINN that autonomously tunes loss weights, ‘

solving the NTE accurately and stably without manual hyperparameter tuning. : w |
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Methodology

* ADA-PINN: mesh-free Physics-Informed Neural Network ;2 g
=
* Tailored for the Neutron Transport Equation (NTE) @
* Inputs: spatial coordinates (x, Y, z), directional cosines (4, ¢), and time (t) i
* Output: predicted neutron angular flux Y(x, vy, z, 4, ¢, t) G
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* Problem Type: Steady-state neutron transport equation

* Materials: Includes both absorbing and scattering media

* External Source: (., 1 = Figure below, Qgyt, =0

* Benchmark: Based on the TWIGL problem, commonly used to test
multigroup transport solvers in heterogeneous domains
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* Adaptive Dynamic Adjustment for Training Loss (ADATL)

* Rapidly changing loss (high curvature): the weight is reduced to Model: ADA-PINN enhanced with ADATL and training-set rearrangement

prevent over-reaction. Solves NTE with high accuracy on 1D Reed and 2D TWIGL benchmarks
 Slowly changing loss (low curvature): the weight is increased because Achieves fast/thermal flux errors £ 0.0017 7/ 0.0011
the term is still under-learned. Mitigates ray effects and boundary-related errors
No manual tuning of hyperparameters required
* Multi-group Iteration (Also governing eq. for Case #2) Outlook: Will be extended to transient, multi-group, and anisotropic

y Y4 . 0y, S = Qext,1 1 25’1_)1(/51 + 25’2_)1(/52 transport cases for broader applicability in reactor simulations
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