

# Physics-informed Neural Networks with Adaptive Dynamic Adjustment for Neutron Transport in simple Geometry



Jeongmin kang<sup>1</sup>, Minseop Song<sup>1\*</sup> <sup>1</sup>Department of Nuclear Engineering, Hanyang Univ., Seoul 04763, Korea

| Summary                                                                                                                                                                                                                                                                                                                               | Results and Discussion                                                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>ADA-PINN: Adaptive Dynamic Adjustment Physics-Informed Neural Network<br/>for the neutron transport equation (NTE)</li> <li>Dynamic loss weighting (ADATL) automatically balances competing PDE and<br/>boundary losses</li> <li>Benchmarked on 1D Reed's and 2D TWIGL problems → matches reference<br/>solutions</li> </ul> | <ul> <li>Case 1: 1D transport problem with scattering(Reed's Problem)</li> <li>Benchmark Purpose: Commonly used to evaluate and validate neutron transport solvers</li> <li>Geometry: Features heterogeneous material layout</li> <li>Material Types: Includes strong absorbers, vacuum regions, and scattering zones</li> </ul> |  |  |
| Introduction                                                                                                                                                                                                                                                                                                                          | <ul> <li>Challenge: Tests solver performance in complex multi-material<br/>environments</li> </ul>                                                                                                                                                                                                                               |  |  |
| <ul> <li>Background</li> <li>The Neutron Transport Equation (NTE) involves six phase-space, making curse of dimensionality.</li> <li>Traditional NN had difficulty in confirming that they matched the solution obtained by FDM.</li> <li>Objective</li> </ul>                                                                        | $ \begin{aligned} & \mu \frac{\partial \psi}{\partial x} + \sum_{t} \psi = \frac{Q_{ext} + \sum_{s} \phi}{4\pi} \\ & \text{Governing eq. for Case #1} \\ & \text{BC #1: } \nabla \psi(x = 0, \mu) = 0 \\ & \text{BC #2: } \psi(x = 8, \mu < 0) = 0 \end{aligned} $                                                               |  |  |

Introduce **ADA-PINN**, a mesh-free PINN that autonomously tunes loss weights,

solving the NTE accurately and stably without manual hyperparameter tuning.

## Methodology

- **ADA-PINN**: mesh-free Physics-Informed Neural Network
- Tailored for the **Neutron Transport Equation (NTE)**
- **Inputs**: spatial coordinates (x, y, z), directional cosines ( $\mu$ ,  $\phi$ ), and time (t)
- **Output:** predicted neutron **angular flux**  $\psi(x, y, z, \mu, \phi, t)$



1.00

0.75

0.25

0.00

E-0.25

-0.75

-1.00





Fig. 4 Predicted solution comparison **between Reference & ADA-PINN** 

Fig. 5 Loss history of ADA-PINN for Case1

## Case 2: 2D transport problem with multi-groups (TWIGL Problem)

- **Problem Type:** Steady-state neutron transport equation
- Materials: Includes both absorbing and scattering media
- **External Source**:  $Q_{ext,1}$  = Figure below,  $Q_{ext,2}$  = 0
- Benchmark: Based on the TWIGL problem, commonly used to test multigroup transport solvers in heterogeneous domains





#### **Key Techniques**

- **Adaptive Dynamic Adjustment for Training Loss (ADATL)**
- **Training Set Rearrangement**
- Multi-group Iteration
- **Area Decomposition**





Position

Fig. 2 Training set Rearrangement

1

10







#### *Fig.* 9 Global comparison of $\phi_2$ in Case 2



Fig. 10 Difference values between ADA-PINN and

**BMS** over the geometry

- Adaptive Dynamic Adjustment for Training Loss (ADATL)
  - Rapidly changing loss (high curvature): the weight is reduced to prevent over-reaction.
  - Slowly changing loss (low curvature): the weight is increased because the term is still under-learned.
- Multi-group Iteration (Also governing eq. for Case #2)

$$\begin{cases} \mu \frac{\partial \psi_1}{\partial x} + \eta \frac{\partial \psi_1}{\partial y} + \Sigma_{t,1} \psi_1 = \frac{Q_{ext,1} + \Sigma_{s,1 \to 1} \phi_1 + \Sigma_{s,2 \to 1} \phi_2}{4\pi} \\ \mu \frac{\partial \psi_2}{\partial x} + \eta \frac{\partial \psi_2}{\partial y} + \Sigma_{t,2} \psi_2 = \frac{Q_{ext,2} + \Sigma_{s,2 \to 1} \phi_1 + \Sigma_{s,2 \to 2} \phi_2}{4\pi} \end{cases}$$

| 1 | 0.2004 | 0.20041  | 0.01 |
|---|--------|----------|------|
| 2 | 0.6666 | 0.616667 | 0    |

*Table 1* Physical parameters of Case 2

0 2561

## Conclusion

- **Model:** ADA-PINN enhanced with ADATL and training-set rearrangement
- Solves NTE with high accuracy on **1D Reed** and **2D TWIGL** benchmarks
- Achieves fast/thermal flux errors ≈ 0.0017 / 0.0011
- Mitigates ray effects and boundary-related errors
- No manual tuning of hyperparameters required

0 228/11

0.01

**Outlook:** Will be extended to **transient**, **multi-group**, and **anisotropic** transport cases for broader applicability in reactor simulations

### Acknowledgement

This research was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. GTL24031-000).