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Fig. 1 Schematic diagram of ADA-PINN
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Key Techniques
•  Adaptive Dynamic Adjustment for 

Training Loss (ADATL)
•  Training Set Rearrangement
•  Multi-group Iteration
•  Area Decomposition

Fig. 2 Training set Rearrangement

• Adaptive Dynamic Adjustment for Training Loss (ADATL)
•  Rapidly changing loss (high curvature): the weight is reduced to

prevent over-reaction.
•  Slowly changing loss (low curvature): the weight is increased because

the term is still under-learned.
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ADATL Technique

Case #1

• Multi-group Iteration (Also governing eq. for Case #2)
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Results and Discussion

Conclusion

Case 1: 1D transport problem with scattering(Reed’s Problem)
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BC #1: ∇𝜓 𝑥 = 0, 𝜇 = 0 
BC #2:  𝜓 𝑥 = 8, 𝜇 < 0 = 0

• Benchmark Purpose: Commonly used to evaluate and validate neutron
transport solvers

• Geometry: Features heterogeneous material layout
• Material Types: Includes strong absorbers, vacuum regions, and 

scattering zones
• Challenge: Tests solver performance in complex multi-material

environments
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Fig. 3 Multi-region transient Reed's problem

Fig. 4 Predicted solution comparison 
between Reference & ADA-PINN

Fig. 5 Loss history of ADA-PINN for 
Case1

•  ADA-PINN: mesh-free Physics-Informed Neural Network
•  Tailored for the Neutron Transport Equation (NTE)
•   Inputs: spatial coordinates (x, y, z), directional cosines (μ, φ), and time (t)
•  Output: predicted neutron angular flux ψ(x, y, z, μ, φ, t)

• ADA-PINN: Adaptive Dynamic Adjustment Physics-Informed Neural Network 
for the neutron transport equation (NTE)

• Dynamic loss weighting (ADATL) automatically balances competing PDE and 
boundary losses

• Benchmarked on 1D Reed’s and 2D TWIGL problems → matches reference 
solutions

Background
• The Neutron Transport Equation (NTE) involves six phase-space, making curse 

of dimensionality.
• Traditional NN had difficulty in confirming that they matched the solution 

obtained by FDM.
Objective
• Introduce ADA-PINN, a mesh-free PINN that autonomously tunes loss weights, 

solving the NTE accurately and stably without manual hyperparameter tuning.

Case 2: 2D transport problem with multi-groups
(TWIGL Problem)

Regio
n

Group, 
g

𝚺𝒕 𝚺𝒔,𝒈⟶𝒈 𝚺𝒔,𝒈⟶𝒈′

1 1 0.2380 0.218095 0.01

2 0.8333 0.68333 0

2 1 0.2380 0. 218095 0.01

2 0.8333 0.68333 0

3 1 0.2564 0.23841 0.01

2 0.6666 0.616667 0

Fig. 7  Geometry of Case 2

Table 1 Physical parameters of Case 2

Fig. 8 Global comparison of 𝝓𝟏 in Case 2.

Fig. 9 Global comparison of 𝝓𝟐 in Case 2

Fig. 10 Difference values between ADA-PINN and 
BMS over the geometry

• Problem Type: Steady-state neutron transport equation
• Materials: Includes both absorbing and scattering media
• External Source: 𝑄𝑒𝑥𝑡,1 = Figure below, 𝑄𝑒𝑥𝑡,2 = 0
• Benchmark: Based on the TWIGL problem, commonly used to test

multigroup transport solvers in heterogeneous domains

Fig. 6 𝑸𝒆𝒙𝒕,𝟏 Graph

•  Model: ADA-PINN enhanced with ADATL and training-set rearrangement
•  Solves NTE with high accuracy on 1D Reed and 2D TWIGL benchmarks
•  Achieves fast/thermal flux errors ≈ 0.0017 / 0.0011
•  Mitigates ray effects and boundary-related errors
•  No manual tuning of hyperparameters required
•  Outlook: Will be extended to transient, multi-group, and anisotropic

transport cases for broader applicability in reactor simulations

Governing eq. for Case #1
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Governing eq. for Case #2
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