HIGA 적용 i-SMR 노심에 대한 PRAGMA/SPHINCS 연계 해석 성능 비교

- 황세연
- 한국전력국제원자력대학원대학교
- 원자로 물리 및 수치해석 연구실

Contents

01 서론

- i-SMR 개요
- i-SMR 적용 가연성 흡수체 개요
- PRAGMA/SPHINCS 연계 해석 성능 평가 목적

02 연구방법

- PRAGMA / SPHINCS 연계 해석 체계
- SPH 반복 기법
- APR1400 벤치마크

03 모델링

- 노심 구성
- HIGA 적용 연료 집합체 설계

04 연구결과

- 반응도 특성
- 출력 분포 특성
- 계산 성능

05 결론

i-SMR (Innovative Small Modular Reactor)

▶ i-SMR 설계 특징

Feature	Value			
Reactor type	Integral PWR			
Plant capacity (number of reactors)	680 MWe (4)			
Thermal/electrical capacity per reactor	520 MWth / 170 MWe			
Reactor coolant pump	Vertical canned motor type			
NSSS operating pressure	15 MPa			
Core inlet/outlet coolant temperature	295.5°C / 320.0°C			
Fuel type/assembly array	UO_2 / 17 × 17 square pitch			
Number of fuel assemblies in the core	69			
Fuel enrichment	< 5 wt%			
Core discharge burnup	< 62,000 MWD/MTU			
Refueling cycle	24 months			
Batch	Two batches			
Reactivity control (Soluble boron- free)	Control rod, burnable absorber rods or moderator temperature			
Steam generator	Helical once-through type			
Safety systems	Fully passive			
Design life	80 years			
Seismic design (SSE)	0.5 g			

-3- 출처: 혁신형소형모듈원자로기술개발사업단

i-SMR 적용 가연성 흡수체 개요

HIGA(Highly Intensive and Discrete Ga dolinia/Alumina Burnable Absorber)는 고밀도 분리형 가돌리니아/알루미나 가연성 흡수체를 뜻한다. 10-20 mol%의 Gd₂O₃ -Al₂O₃ 소결체로 구성되어 있으며, 연료와 물리적으로 분리되어 있어 운전 주기에서 도 연소 안전성과 구조적 내구성을 동시에 확보 가능하다.

출처: J.S. Kim, T.S. Jung, J.I. Yoon, Reactor core design with practical gadolinia burnable absorbers for soluble boron-free operation in the innovative - 4 - SMR, Nuclear Engineering and Technology, Volume 56, Issue 8, 2024, Pages 3144-3154, ISSN 1738-5733

연구 목적: PRAGMA/SPHINCS 연계 해석 성능 평가

BORON

기존 2단계 해석법

- 연료 집합체 단위 단면적 출
 력 해석
- 전 노심 확산 이론 기반 해석 수행
 정확도 저하

고정밀 노심 해석 코드 요구 PRAGMA/SPHINCS

자차폐 기반의 고정밀 반응도 제어

단순 구조로 설계 및 제조성 향상

화학 폐기물 감소 붕소희석 사고 위험 감소

복잡한 중성자 분포 출력 비균질성 심화

SPH(Super Homogenization) 반복 기법

SPH 보정 인자 성능 평가

▶ 2x2 체커보드 문제 (구성)

A01, HIGA 10 mol.%

ullet

000000000

		A03	3, HI	GA 1	2 mc	ol.%				
\bigcirc	0	\bigcirc	\bigcirc	\bigcirc						
\bigcirc										
\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc										
\bigcirc										
\bigcirc	0									
\bigcirc	\bigcirc		\bigcirc	0	\bigcirc		\bigcirc	0	\bigcirc	0
0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0		0
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		AO	6, HI	GA 1	6 mc	ol.%				
\bigcirc		\bigcirc	\bigcirc	\bigcirc						
\bigcirc	\bigcirc	\bigcirc	Ó	\bigcirc	\bigcirc	Ó	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc

000000000

000000000

000000000

 \bullet 0 0 0 0 0 0 0 0

000000000

1	A00 / A01	13	A01 / A06	25	A03 / A07
2	A00 / A02	14	A01 / A07	26	A03 / A08
3	A00 / A03	15	A01 / A08	27	A04 / A05
4	A00 / A04	16	A02 / A03	28	A04 / A06
5	A00 / A05	17	A02 /A04	29	A04 / A07
6	A00 / A06	18	A02 / A05	30	A04 / A08
7	A00 / A07	19	A02 / A06	31	A05 / A06
8	A00 / A08	20	A02 / A07	32	A05 / A07
9	A01 / A02	21	A02 / A08	33	A05 / A08
10	A01 / A03	22	A03 / A04	34	A06 / A07
11	A01 / A04	23	A03 / A05	35	A06 / A08
12	A01 / A05	24	A03 / A06	36	A07 / A08

Compositions

Case

Compositions

Case

Compositions

Case

출처: C.H. Lim, S.J. Kwon, J.I. Yoon, Performance analysis of a two-step calculation procedure based on Monte Carlo and pin-wise diffusion methods - 8 for PWR core design, Nuclear Engineering and Technology, Volume 57, Issue 8, 2025, 103596, ISSN 1738-5733

SPH 보정 인자 성능 평가

▶ 2x2 체커보드 문제 (계산 결과)

유효증배계수 비교

- 9 -

SPH 보정 인자 성능 평가

▶ 2x2 체커보드 문제 (계산 결과)

RMS 및 최대 오차 봉 단위 출력 분포

첨두출력계수 비교

- 10 -

SPH 보정 인자 성능 평가

▶ 2x2 체커보드 문제 (계산 결과)

봉 출력 오차 (A00/A08)

APRO

R04	Soluble boron concentration (ppm)	CZP (TF, TM = 300K)	HZP (TF, TM = 600K)	HFP (TF = 900K, TM = 600K)
	0	V01	V02	V03
	1,000	V04	V05	V06
	2,000	V07	V08	V09

- 12 -

APR1400 벤치마크 문제 (계산 과정)

- 1. 2차원 집합체 격자 계산
- 2. SPH 계수 생성 및 단면적에 적용하여 최종 봉 단위 단면적 완성
- 3. 반사체 영역의 단면적 생성
 - 소형 노심 모형 구성
 - → 구역별 단면적 데이터 추출 (연료 가장자리(RE), 연료 코너(RC), 반사체 코너(RX) 영역)
 - → 축 방향 반사체 계산(PRAGMA) 상,하단 반사체를 포함한 연료 집합체 문제를 PRAGMA로 3차원 계산
 - → 반사체 단면적 균질화

FA	FA	FA	RE
FA	FA	FA	RE
FA	FA	RC	RX
RE	RE	RX	

APR1400 벤치마크 문제 (계산 결과)

STREAM3D, MPACT, DeCART 코드 기반의 기존 연구들과 유효증배계수 비교

▶ 유효증배계수 비교	CASEID	MCCARD (std. [pcm])	PRAGMA (std. [pem])	STREAM3D	MPACT	DeCART	SPHINCS
	V01	1.21765 (4)	1.21683(1)	1.21547	1.21534	1.21547	1.21648
	V02	1.13942 (4)	1.13928(1)	1.13931	1.13938	1.13931	1.13894
	V03	1.13061 (4)	1.13047(1)	1.13025	1.13013	1.13025	1.13012
	V04	1.03406 (4)	1.03370(1)	1.03241	1.03448	1.03241	1.03371
	V05	1.01760 (4)	1.01751(1)	1.01706	1.01829	1.01706	1.01745
	V06	1.00973 (4)	1.00972(1)	1.00922	1.01013	1.00922	1.00965
	V07	0.90907 (4)	0.90886(1)	0.90755	0.91046	0.90755	0.90880
	V08	0.92594 (4)	0.92593 (1)	0.92551	0.92709	0.92551	0.92594
	V09	0.91899 (4)	0.91895(1)	0.91833	0.91979	0.91833	0.91896
▶ 유효증배계수 오차 [pcm]	CASEID	MCCARD (std. [pcm])	PRAGMA	STREAM3D	MPACT	DeCART	SPHINCS
	V01	1.21765 (4)	-82	-218	-231	-218	-117
	V02	1.13942 (4)	-14	-11	-4	-11	-48
	V03	1.13061 (4)	-14	-36	-48	-36	-49
	V04	1.03406 (4)	-36	-165	42	-165	-35
	V05	1.01760 (4)	-9	-54	69	-54	-15
	V06	1.00973 (4)	-1	-51	40	-51	-8
	V07	0.90907 (4)	-21	-152	139	-152	-27
	V08	0.92594 (4)	-1	-43	115	-43	0
	V09	0.91899 (4)	-4	-66	80	-66	-3

노심 구성 및 제어봉 장전 모형

- 15 -

1주기 연료 집합체 설계

1주기 연료 집합체 별 가연성 흡수봉 조성

	Fuel	Burnable Absorber rod									
Type Type U- (w	rod	HIGA	18	st IGD		2nd IGD					
	U-235	Contant of $CdO(mol \theta/)$	U-235	wt 0/	No	U-235	vert 0/	Na			
	(wt.%)	Content of $Gu_2O_3(1101.76)$	(wt.%)	WL.70	190.	(wt.%)	wt.70	10.			
A01	4.00	10	-	-	I	-	-	-			
A02	4.00	10	3.50	4	4	-	-	-			
A03	4.00	12	3.50	4	4	-	-	-			
A04	4.00	14	3.50	4	4	2.50	8	4			
A05	4.00	15	3.50	4	4	2.50	8	4			
A06	4.00	16	3.50	4	4	2.50	8	4			
A07	4.00	18	3.95	1	4	2.50	8	8			
A08	4.00	18	3.75	2	4	2.50	8	8			

1주기 연료 집합체 별 연소도 대비 유효증배계수

KARMA/ASTRA

PRAGMA/SPHINCS

모델링

1주기 노심 구성 및 제어봉 축 방향 구성

Y/X	Е	F	G	Н	J
5	A07	A07	A06	A04	A01
6	A07	A07	A08	A05	A02
7	A06	A08	A04	A03	A02
8	A04	A05	A03	A01	
9	A01	A02	A02		

A01 \sim A08: Fresh fuel

PLANE	SIZE	ASSEMBLY								
PLANE	(CM)	A01	A02	A03	A04	A05	A06	A07	A08	
24	10	C/B	C/B	C/B	C/B	C/B	C/B	C/B	C/B	
23	10									
22	10									
21	10									
20	10		4.02	4.02				A07	A08	
~	~	4.01			A04	A05	A06			
5	10	AUI	A02	A03						
4	10									
3	10									
2	10									
1	10									

*C/B: U-235 4.0 w/o with Al_2O_3

Type	Fuel		Burnable Absorber rod									
	rod	HIGA	1	1st IGD		2nd IGD			3rd IGD			
	U-	Content of	U-	wt%	No.	U-	wt%	No.	U-	wt%	No.	
	235	Gd2O3(mol%)	235			235			235			
	(wt%)		(wt%)			(wt%)			(wt%)			
X01	4.95	15	2.50	8	20	-	-	-	-	-	-	
X02	4.95	12	2.50	8	4	2.70	7	4	3.35	4	4	
X03	4.95	12	2.50	8	8	3.35	4	4	3.35	3	4	
X04	4.95	9	3.50	4	4	-	-	-	-	-	-	

평형 주기 노심 구성 및 제어봉 축 방향 구성

Y/X	Е	F	G	Н	J
5	G01	H01	H01	H02	G04
6	H01	G01	H01	H03	G03
7	H01	H01	H02	G01	G02
8	H02	H03	G01	H04	
9	G04	G03	G02		

DI ANE	SIZE	ASSEMBLY					
FLANE	(CM)	X01	X02	X03	X04		
24	10	C/B	C/D	C/D	C/D		
23	10		U/D	C/D	C/D		
22	10			X03	X04		
21	10						
20	10						
\sim	2	V 01					
5	10	A01	X02				
4	10						
3	10						
2	10						
1	10						

H01 ~ H04: Fresh fuel Batch of X01 ~ X04 G01 ~ G04: Once burned of X01 ~ X04

*C/B: U-235 4.0 w/o with Al₂O₃

- 21 -

평형 주기 연료 집합체 별 연소도 대비 유효증배계수

KARMA/ASTRA

PRAGMA/SPHINCS

- 22 -

연구결과

1주기 잉여반응도 변화 곡선 (ARO 조건)

KARMA/ASTRA

PRAGMA/SPHINCS

예상 주기 길이: 780 EFPD 반응도 변화폭: 500pcm 예상 주기 길이: 830 EFPD 반응도 변화폭: 600pcm

- 23 -

연구결과 1주기 연소도 대비 ASI, Fr, Fq 변화 및 제어봉 임계 위치 변화

✓ 선출력밀도 3.86 kW/ft 일 때, 2차원 선출력밀도 : 5.566 kW/ft, 3차원 선출력밀도 : 8.751 kW/ft
 → 상용 PWR의 일반적 목표 값 8.12 kW/ft(Fr=1.45), 13.61 kW/ft(Fq=2.43) 보다 낮은 수준

✓ 최대 Fr 값: 1.442 / 최대 Fq 값: 2.267

KARMA/ASTRA

- 24 -

연구결과

1주기 BOC, MOC, EOC 별 축 방향 출력분포

KARMA/ASTRA

-BOC -EOC

연구결과

1주기 BOC, MOC, EOC 별 상대출력분포

KARMA/ASTRA

Y/X	Е	F	G	Н	J
	0.99	0.98	0.90	1.14	0.97
5	1.19	1.15	0.95	1.12	0.88
	1.22	1.20	1.14	1.12	0.86
	0.98	1.01	1.06	1.15	0.89
6	1.15	1.16	1.15	1.12	0.84
	1.20	1.20	1.17	1.10	0.82
	0.90	1.06	1.18	1.14	0.72
7	0.95	1.15	1.17	1.07	0.68
	1.14	1.17	1.15	1.02	0.66
	1.14	1.15	1.14	0.88	
8	1.12	1.12	1.07	0.79	
	1.12	1.10	1.02	0.75	
	0.97	0.89	0.72		
9	0.88	0.84	0.68		
	0.86	0.82	0.66		
	First	Line:	BOC	(0 MWD/	MTU)
	Second	Line:	MOC	(10000 M	WD/MTU)
Third		Line:	EOC (20711 MWD		WD/MTU)

PRAGMA/SPHINCS

\mathbf{Y}/\mathbf{X}	E	F	G	Н	J	
	0.97	0.96	R4 0.84	1.13	0.99	
5	1.16	1.11	0.88	1.11	0.91	
	1.22	1.19	1.09	1.11	0.87	
	0.96	0.99	1.04	1.15	0.92	
6	1.11	1.13	1.12	1.13	0.88	
	1.19	1.19	1.15	1.09	0.84	
	R4 ^{0.84}	1.04	R31.16	1.16	0.74	
7	0.88	1.12	1.15	1.09	0.71	
	1.09	1.15	1.15	1.02	0.68	
	1.13	1.16	1.16	0.89		
8	1.11	1.13	1.09	0.81		
	1.11	1.10	1.02	0.76		
	0.99	0.92	0.76			
9	0.91	0.88	0.72			
	0.87	0.84	0.69			
	First	Line:	BOC	(0 MWD/MTU)		
	Second	Line:	MOC	(10000 MWD/MTU)		
	Third	Line:	EOC	(21000 MWD/MTU)		

- 26 -

연구결과

평형주기 잉여반응도 변화 곡선 (ARO 조건)

PRAGMA/SPHINCS 2,000 2,0001,800 1,800 1,600 1,600) 1,400 1,200 1,400 1,200 Reactivity (pcm) Reactivity (1,000 1,000 800 800 600 600 400 400 200200 0 0 400 EFPD 200 600 800 0 200400600 800 0 EFPD

KARMA/ASTRA

연구결과 평형주기 연소도 대비 ASI, Fr, Fq 변화 및 제어봉 임계 위치 변화

✓ 선출력밀도 3.86 kW/ft 일 때, 2차원 선출력밀도 : 6.423 kW/ft, 3차원 선출력밀도 : 10.225 kW/ft → 상용 PWR의 일반적 목표 값 8.12 kW/ft(Fr=1.45), 13.61 kW/ft(Fq=2.43) 보다 낮은 수준

✓ 최대 Fr 값: 1.664 / 최대 Fq 값: 2.649

3.0

2.5

2.0

1.0

0.5

0.0

800

-R4

800

1.5 문^교

- 28 -

평형주기 BOC, MOC, EOC 별 축방향 출력분포

KARMA/ASTRA PRAGMA/SPHINCS -BOC - BOC - EOC -BOC -BOC -EOC 1.6 1.61.41.4 1.2 1.2Axial power 8.0 power 9.0 km Axial power 8.0 9.0 0.40.4 0.2 0.20.0 0.02040 60 80 100 $\mathbf{0}$ 20 40 60 80 100 0 Height (%) Height(%)

- 29 -

평형주기 BOC, MOC, EOC 별 상대출력분포

KARMA/ASTRA

Y/X	E	F	G	Н	J	
	1.12	1.05	0.88	1.22	0.99	
5	1.15	1.21	1.01	1.28	0.90	
	1.18	1.40	1.40	1.30	0.74	
	1.05	1.10	1.08	1.16	0.85	
6	1.21	1.13	1.23	1.22	0.75	
	1.40	1.17	1.39	1.21	0.62	
	0.88	1.08	1.23	1.04	0.66	
7	1.01	1.23	1.26	0.93	0.56	
	1.40	1.39	1.28	0.81	0.46	
	1.22	1.16	1.04	0.90		
8	1.28	1.22	0.93	0.79		
	1.30	1.21	0.81	0.68		
	0.99	0.86	0.66			
9	0.90	0.75	0.56			
	0.74	0.62	0.46			
	First	Line:	BOC	(0 MWD/)	MTU)	
	Second	Line:	MOC	(10000 MWD/MTU		
	Third	Line:	EOC	(20782 M	WD/MTU)	

PRAGMA/SPHINCS

Y/X	E	F	G	н	J	
	1.07	0.96	R4 0.70	1.24	1.08	
5	1.19	1.19	0.96	1.27	0.91	
	1.22	1.40	1.33	1.28	0.75	
	0.96	1.01	1.01	1.24	0.93	
6	1.19	1.11	1.21	1.23	0.76	
	1.40	1.16	1.37	1.20	0.63	
	R40.70	1.01	R3 1.11	1.06	0.72	
7	0.96	1.21	1.25	0.93	0.58	
	1.33	1.37	1.28	0.82	0.48	
-	1.24	1.25	1.06	0.94		
8	1.27	1.24	0.93	0.82		
	1.28	1.20	0.82	0.72		
	1.08	0.94	0.74			
9	0.91	0.77	0.60			
	0.75	0.64	0.50			
First		Line:	BOC	(0 MWD/MTU)		
	Second	Line:	MOC	(10000 MWD/MTU)		
Third		Line:	EOC	(21000 MWD/MTU)		

- 30 -

연구결과

계산 성능 평가

Burnup	Depletion	# of 2D/1D	CMFD	Time with	Time with	Time with 4	Time with 8
(MWD/)	Туре	Pin Calc.	Iteration	1 CPU (s)	2 CPUs (s)	CPUs (s)	CPUs (s)
0	-	47	250	5.77	3.19	1.98	1.29
50	SEMI	33	150	4.25	2.37	1.48	0.97
500	FULL	64	300	8.68	4.85	3.06	1.91
1000	FULL	64	300	8.70	4.81	3.06	1.91
2000	FULL	64	300	8.73	4.89	3.02	1.88
3000	FULL	62	300	8.32	4.71	2.93	1.86
4000	FULL	56	200	7.56	4.21	2.62	1.65
5000	FULL	56	200	7.49	4.14	2.64	1.67
6000	FULL	56	200	7.53	4.22	2.62	1.65
7000	FULL	56	200	7.58	4.22	2.67	1.63
8000	FULL	54	200	7.26	4.08	2.53	1.60
9000	FULL	56	200	7.48	4.24	2.62	1.64
10000	FULL	56	200	7.47	4.25	2.63	1.64
11000	FULL	63	300	8.39	4.75	2.97	1.88
12000	FULL	64	300	8.50	4.73	3.04	1.90
13000	FULL	64	300	8.51	4.73	3.06	1.91
14000	FULL	64	300	8.53	4.77	3.06	1.91
15000	FULL	60	300	8.12	4.58	2.91	1.82
16000	FULL	59	300	8.06	4.56	2.88	1.80
17000	FULL	56	200	7.66	4.30	2.68	1.65
18000	FULL	56	200	7.46	4.13	2.63	1.63
19000	FULL	64	300	8.48	4.76	3.02	1.89
20000	FULL	64	300	8.50	4.76	3.00	1.91
Total Time (s)				179.03	100.26	63.09	39.59

- □ 본 연구는 HIGA가 적용된 i-SMR 노심을 대상으로 PRAGMA/SPHINCS 연계 해석 결과와 KARMA/ASTRA 연계 해석 결과를 비교 분석하였다.
- □ 이에 앞서, PRAGMA/SPHINCS 연계 해석 체계는 기존 2x2 체커보드 문제 및 APR1400 벤치마크 해석을 통해 유효증배계수 및 출력 분포에서 MOC 기반의 수송 코드와 유사한 수준의 정확도를 갖는 것으로 검증되었다.
- □ i-SMR 해석에는 이전 연구에서 제시된 노심 구성 및 제어봉 장전 모델을 동일하게 적용하였으며, 해석 결과에서는 사용된 ENDF 라이브러리 및 제어봉 위치 차이로 인한 출력 및 반응도 오차가 관찰되었다.
- □ 이러한 오차 원인을 보다 명확히 규명하고, 해석 신뢰도를 높이기 위해 입력 조건 및 해석 절차 전반에 대한 면밀한 재검토를 진행할 예정이다.

