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1. Introduction 
 

Secondary systems in operating Nuclear Power Plants 
(NPPs) play an important role in generating electricity 
by converting thermal energy from the primary system 
to mechanical energy using components such as 
turbines, condensers, pumps, and pipes. As mechanical 
components degrade with time, even small, undetected 
defects can lead to unexpected downtime, jeopardizing 
both economy and safety. To mitigate these risks, the 
development of a reliable fault diagnosis system has 
become essential [1]. 

In general, the fault diagnosis system involves 
monitoring with sensors. Collected signals are subjected 
to signal processing techniques such as denoising and 
filtering to extract meaningful features. Then, the 
trained AI model determines the presence of defects 
using the processed data. However, the current system 
still requires a certain degree of manual operation, 
implying that human error is inevitable. Furthermore, 
AI models tend to perform well in experimental 
settings, but require adjustments when installed in 
different NPPs due to variations in environmental and 
operational conditions.  

To address these challenges, this paper proposes the 
development of a continuous pipe leakage diagnosis 
system for the secondary systems of operating NPPs, 
adapting cloud-native and MLOps. 

 
2. Continuous Diagnosis System 

 
The proposed system allows continuous diagnosis 

and flexible AI model adjustment by integrating cloud 
computing and MLOps. The cloud-native solution 
automates application management, hardware scaling, 
and failure controls. However, the conventional cloud 
pipelines alone do not suffice for AI systems, as they 
lack the capabilities of model version control and 
performance monitoring. MLOps complements these 
shortages by managing the full lifecycle of AI, 
including model training, hyperparameter tuning, and 
deployment. Integration of cloud computing and 
MLOps significantly reduce human error and increase 
the system reliability and scalability. 
 

2.1 Cloud-Native Solution 
 

Cloud-based systems dynamically allocate hardware 
resources and automate software tasks such as initiating 
and managing applications through programmable 
infrastructure. Additionally, cloud-native solutions offer 
auto-scaling capabilities, which adjust the number of 
running applications to the demands by the system 
without requiring human intervention [2]. In the event 
of a system failure, the proposed system can also 
re-initiate the corresponding task and facilitate 
real-time, continuous fault diagnosis. The proposed 
fault diagnosis system aims to minimize human 
intervention as much as possible by integrating 
cloud-native solutions.  
 
2.2 Optimizing AI model 
  

The AI model training is an important step in the 
development process. The performance of the model 
depends heavily on the balance between external and 
internal parameters. Especially for NPPs, fine tuning AI 
models is essential, for each NPPs have their unique 
environmental and operational conditions. MLOps 
assist this section by adjusting internal parameters such 
as biases and weights of a pre-trained model to improve 
its performance on a decision-making task. 
Hyperparameter tuning, which includes optimizing the 
learning rate, number of epochs, and optimizers can 
further improve the accuracy of the model performance. 
 

3. System Implementation 
 

The proposed pipe leakage diagnosis system begins 
with data collection from wireless sensors. The sensor 
transmits ultrasonic acoustic signals, which are 
processed using Fast Fourier Transform (FFT) 
technique. The processed data is then sent to the trained 
deep learning model for decision-making.  
 
3.1 Ultrasonic Acoustic Signal Processing 
 

According to the Nyquist theorem, the sampling rate 
should be twice the highest frequency of the signal. 
Since the highest frequency of the signal was 100kHz, a 
sampling rate of 256kHz was selected for accurate 
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representation. Each FFT takes about 4ms to process, 
and the graph on the display server represents the 
average frequency spectrum of 10 FFT results. In the 
absence of delay, it would be updated approximately 
every 40ms.  

 
3.2 System Integration 
 

After FFT processed signals undergo AI-model-based 
diagnosis, the real-time sensor data and their respective 
leakage probabilities are displayed on the implemented 
Graphical User Interface (GUI). In addition, every 
material has their characteristic frequency regions 
which are used to determine the presence of the 
leakage. For this experiment, the frequency spectrum 
data is represented in the range of 20kHz to 100kHz, 
Fig. 1. The pipe leakage is determined by looking at the 
leakage probability of the specific sensor on the graph. 
 

 
Fig. 1. Display server draws a real-time graph of sensor data 
with failure probabilities on the top right corner.  
 

To prevent hardware overuse, the proposed system is 
divided into individual servers based on their unique 
functions: signal collection, processing, and display. 
These servers communicate through wireless network 
protocols such as Transmission Control Protocol (TCP) 
and Representational State Transfer (REST). Then, the 
pipe leakage diagnosis servers are integrated to the 
cloud-native solution. The status of each server 
application is easily managed through terminal 
commands. The auto-scaling and failure control 
functionalities of the cloud-native solution was 
confirmed by intentionally stopping one random server 
while the system was running. The GUI was not 
interrupted during this process, thus ensuring reliability 
to the proposed system. 

For AI model optimization, hyperparameter tuning 
was studied using as a preliminary study. The goal was 
to find the optimal external parameters, such as learning 
rate, batch size, and optimizer, for training. Experiment 
was conducted by simulating the training of a 6-layered 
convolutional neural network (CNN) for 30 times. The 
best simulation result was found when 1.48e-3 learning 
rate, 11 epochs and the Adam optimizer were set with 
the highest accuracy of 97.92%.  

 
Fig. 2. Experimental result of hyperparameter tuning testing.  
 

Currently, more research is being conducted for the 
development of environment-adaptive AI models. Once 
its performance is verified, it will be integrated into the 
implemented diagnosis system. 

 
4. Conclusions 

 
In summary, a wireless sensor-based pipe leakage 

diagnosis system has been implemented to monitor 
secondary systems in operating NPPs. Auto-scaling and 
autonomous system-wide management capability of the 
cloud-native solution allow the proposed system to run 
continuously and minimize human error. MLOps 
integration can improve the system performance 
consistency by providing flexibility to adapt to various 
NPPs. As a result, the implemented system significantly 
reduces unplanned plant downtime and provides an 
effective diagnostic strategy. Future research focuses on 
developing a mechanism to automate the optimization 
of AI models for fault diagnosis in an air-gapped 
condition. 
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