Utilizing Aluminium Chlorides for Oxygen Removal in Molten Fuel Salts

Jihun Kim, James Daw, Sungyeol Choi*, Clint Sharrad*

martine98@snu.ac.kr

2025/05/23

Context

Introduction

- Redox potential control method
- Oxygen intrusion in molten salt system and control methods
- Potential of aluminium chloride usage

Experiments

- Aluminium chloride thermal stability
- Oxygen scavenging capacity
- Redox buffering capability

Chloride-based molten fuel salts

- Chloride-based molten fuel salts, namely NaCI-UCI₃, KCI-UCI₃, NaCI-KCI-UCI₃, are promising candidates for molten salt small modular reactors.
- Chloride-based molten salts are known to be more corrosive compared to other types of molten salts

Materials	Phase transition temperature (°C)	Advantages	Disadvantages	
Chlorides	600~900	Low price, wide variety, can be made into mixed salts with different melting points, the service temperature range of mixed salts is wide.	Highly corrosive.	
Fluorides	700~1300	High melting point and latent heat, low viscosity, good compatibility with metal materials.	Large solid-liquid phase change volume shrinkage, low thermal conductivity, prone to "thermal ratcheting" and "thermal spots".	
Nitrates	300~400	Low corrosiveness, cannot decompose at 500 °C.	Low thermal conductivity, easy to produce local overheating during use.	
Carbonates	600~900	Low corrosiveness, high density and solubility, high melting point.	Some salts are easy to decompose and have high viscosity.	

Advantages and Disadvantages of Different Types of Molten Salts

Corrosion of Structural Materials in KCI-MgCl₂ Salt

[1] Okonkwo, Bright O., et al. "Corrosion behaviour of Al-containing alloys in Cl-based molten salt environment." Journal of Nuclear Materials (2024): 155207.
 [2] Song, Xiaoyun, et al. "Review on thermophysical properties and corrosion performance of molten salt in high temperature thermal energy storage." IOP Conference Series: Earth and Environmental Science. Vol. 474. No. 5. IOP Publishing, 2020.

Redox potential control method

- Redox potential is the term used to describe redox condition of molten salt in electrochemical view. It is a
 measureable voltage that is related to the activities(concentration) of the reduced and oxidized species in the
 molten salt solution.
- Redox potential control is an effective and practical method for maintaining chemical property of salt and mitigating material corrosion in MSR.

Methods	Equilibrium reactions	Redox potential
Gas phase control (<i>HF/H</i> ₂)	$\frac{1}{2}H_2 + \frac{1}{2}F_2 \leftrightarrow HF$	$E_{HF/H_2} = E_{HF/H_2}^0 + \frac{RT}{F} \ln \frac{p_{HF}}{\sqrt{p_{H_2}}}$
Major metal control (Be ²⁺ /Be ⁰)	$Be^0 + F_2 \leftrightarrow BeF_2$	$E_{BeF_2/Be^0} = E_{BeF_2/Be^0}^0 + \frac{RT}{2F} \ln \frac{a_{BeF_2}}{a_{Be^0}}$
Dissolved salt control (U^{4+}/U^{3+})	$UF_3 + \frac{1}{2}F_2 \leftrightarrow UF_4$	$E_{UF_4/UF_3} = E_{UF_4/UF_3}^0 + \frac{RT}{F} \ln \frac{a_{UF_4}}{a_{UF_3}}$

Redox potential control method in fluoride based molten salt

Redox potential control method

The methods developed to control the redox potential of molten salts have focused on using reducing metals and soluble redox couples as redox buffers.

Reducing agent	Salt system	Possible reaction	Zero-state solubility
U metal	LiF-CaF ₂ -UF ₄ [4] NaCl-CaCl ₂ -UCl ₃ [5]	$3U(\mathbb{IV}) + U \rightarrow 4U(\mathbb{II})$	Insoluble
Gd liquid metal	LiF-CaF ₂ -EuF ₃ [4]	$3EuF_3 + Gd \rightarrow 3EuF_2 + GdF_3$	Insoluble
Zr metal	NaCl-CaCl ₂ -UCl ₃ [5]	$4UCl_4 + Zr \rightarrow 4UCl_3 + ZrCl_4$	Insoluble
Li metal	LiCl-KCl-LnCl ₃ [6] (Ln: La, Ce, Nd)	$\begin{array}{c} Li^0 + Cl_2 \leftrightarrow LiCl_2 \\ LnCl_4 + Li \rightarrow Ln + 3LiCl \end{array}$	Soluble
Be metal	LiF-BeF ₂ -ZrF ₄ -UF ₄ [7]	$Be^{0} + F_{2} \leftrightarrow BeF_{2}$ $Be^{0} + 2UF_{4} \leftrightarrow BeF_{2} + 2UF_{3}$	Soluble
Eu ²⁺ /Eu ³⁺	LiF-NaF-KF [8]	$Eu^{3+} + e^- \leftrightarrow Eu^{2+}$	-
Sm ²⁺ /Sm ³⁺	NaF-BeF ₂ [9]	$Sm^{3+} + e^- \leftrightarrow Sm^{2+}$	-

Redox potential control methods using metals and redox couples

[4] Gibilaro, Mathieu, Laurent Massot, and Pierre Chamelot. "A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control." *Electrochimica Acta* 160 (2015): 209-213.
[5] Newton, Matthew Laughlin, David Ethan Hamilton, and Michael Forrest Simpson. "Methods of redox control and measurement in molten NaCl-CaCl2-UCl3." ECS Transactions 98.10 (2020): 19.
[6] Simpson, Michael F., et al. "Selective reduction of active metal chlorides from molten LiCl-KCl using lithium drawdown." Nuclear engineering and technology 44.7 (2012): 767-772.

[7] Zhang, Jinsuo, et al. "Redox potential control in molten salt systems for corrosion mitigation." Corrosion Science 144 (2018): 44-53.

[8] Guo, Shaoqiang, et al. "Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept." Journal of Nuclear Materials 496 (2017): 197-206 [9] Zuo, Yong, et al. "Electrochemical study of the redox buffering behavior of Sm (III)/Sm (II) in NaF-BeF2 melt." Electrochimica Acta 474 (2024): 143564.

Oxygen intrusion in molten salt system

- NaCl or KCl-based fast chloride reactors are expected to control the redox potential by adjusting the U⁴⁺/U³⁺ ratio through the introduction of a reducing metal or redox couple.
- Uranium loss in this system can impact not only process efficiency, but also overall system stability.

Influence of Intruding Oxygen on Redox Potential and Corrosion Rates SALT REDOX POTENTIAL CORROSION RATES -1.10 Ci/Q) -1.15 200 -1.20 ol (V vs. 100 8 -1.30 10 -1.35 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 time (days) time (days) Salt potential and glovebox O2 Fe corrosion rate and glovebox O₂ concentration versus time concentration versus time

Localized overheating

Developed oxygen control methods

- The Oak Ridge National Laboratory (ORNL) has proposed bubbling HF/H₂ mixtures into the salt to remove O²⁻ [11]. $\circ O^{2^-} + 2HF \iff H_2O + 2F^-$
- ZrF_4 into LiF-BeF₂ molten salt has been proposed to remove O²⁻ [12]. $\circ Zr(IV) + 20^{2-} \leftrightarrow ZrO_2$
- H₂ gas flow and electrochemical/chemical treatment [13].
 - $\circ \hspace{0.2cm} H_2 + O^{2-} \rightarrow H_2O + 2e^-$

[11] A. L. Mathews and C. F. Baes Jr., Oxide chemistry and thermodynamics of molten lithium fluoride-beryllium fluoride solutions, Inorg. Chem., 1968, 7, 373–382.
 [12] Peng, Hao, et al. "Inhibition effect of ZrF 4 on UO 2 precipitation in the LiF–BeF 2 molten salt." RSC advances 11.31 (2021): 18708-18716.
 [13] Zuo, Yong, et al. "A novel purification method for fluoride or chloride molten salts based on the redox of hydrogen on a nickel electrode." RSC advances 11.56 (2021): 35069-35076.

Possibility of aluminium chloride as oxygen scavanger

- AICI₃ has been considered as a potential oxygen scavenger to help maintain the redox potential in molten chloride salt systems.
- Al₂O₃ can be more thermodynamically stable in a molten salt environment and furthermore convert uranium oxospecies into chlorides.

$$3UOCl + 2AlCl_3 \rightarrow 3UCl_3 + Al_2O_3, \Delta G_{973K}^0 = -275 \frac{kJ}{mol}$$

 $3UO_2 + 4AlCl_3 \rightarrow 3UCl_4 + 2Al_2O_3, \Delta G_{973K}^0 = -185 \frac{kJ}{mol}$

Table 1

Experimental conditions for the conversion of UO_2 with varying concentration of AlCl₃, Al: stoichiometric \times 2.

	Sample ID	AlCl ₃	UO ₂ / g	AlCl ₃ / g	Time/ h	Al/g	Conversion efficiency of UO ₂ (%)
	S1	stoichiometric $\times 1$	1.40	0.69	2.5	0.092	$\textbf{34.8} \pm \textbf{0.5}$
	S2	stoichiometric $\times 2$	1.40	1.39	2.5	0.093	92.1 ± 1.1
LiCI-KCI-Alo	Cl ₃ -UO ₂	stoichiometric $\times 4$	1.41	2.76	2.5	0.092	92.2 ± 1.1
	S4	stoichiometric $\times 2$	1.40	1.38	4	-	84.7 ± 1.0
	S5	stoichiometric $\times 1$	1.40	0.71	5	-	33.1 ± 1.2
	S6	-	1.40	-	4	0.092	-

[14] Samanta, Nibedita, et al. "Electrochemical and spectroscopic analysis of thermochemical conversion of UO2 to UCI3 using AlCI3 and Al in LiCI–KCI eutectic." *Progress in Nuclear Energy* 153 (2022): 104429

8

Overview of experiments

• Objective: Redox potential stabilization and oxygen control in molten fuel salts using aluminium chloride

Basic experiments

- Aluminium chloride long-term stability
- Chemical form of aluminium chloride in molten salt

Oxygen removal

- Air exposed v.s. Ar exposed atmosphere
- Oxygen removal efficiency
- Feasibility in a uranium environment (Ce surrogate usage)

Redox potential stabilization

 \circ Inducing oxides in Eu²+/Eu³+ redox system

Aluminium chloride long-term stability

Aluminium concentration gradually decreases over time.

- ∘ 0.493 g of AlCl₃-NaCl-KCl (ASK, 48.2-33.4-18.4 mol%) was added into 10 g of NaCl-KCl (SKE, 50-50 mol%) at 700 °C.
- The loss of aluminium when introducing ASK into SKE was negligible (Input amount : 0.63 wt% *v.s.* regression: 0.62 wt%).

AICI₃- NaCI-KCI salt mixture

Open quartz cell

Chemical form of aluminium chloride in molten salt

- AICI₃ initially stabilizes as both AI₂CI₇⁻ and AICI₄⁻. As time passes, the aluminium concentration became uniform over molten salt, and only AICI₄⁻ was observed.
 - ∘ 2.8456 g of AICI₃-NaCI-KCI (ASK, 48.2-33.4-18.4 mol%) was added into 50 g of NaCI-KCI (SKE, 50-50 mol%) at 700 °C.
 - Powder Raman analysis was performed at six different points on each sample. All samples were prepared by quenching molten salt. After 3 hours, only AICl₄- peak was observed, and its intensity became uniform across all measured points.

Raman spectra sampled at (a) 1 hour and (b) 5 hours after the addition of ASK

Air v.s. Ar exposed atmosphere

- Aluminum chloride can help maintain the concentration of base salts (Na, K) when exposed to air.
 - ∘ 2.8456 g and 4.98 g of ASK was respectively added into 50 g and 100 g of SKE at 700 °C.
 - When exposed to air, the concentrations of Na and K remained stable, whereas the AI concentration decreased significantly.
 - It seems that aluminium oxide forms when aluminium chloride reacts with oxygen (directly O_2 form or intruded O_2^- form)
 - $\cdot \quad 2 \text{ Al}^{3\text{+}} + 3 \text{ O}^{2\text{-}} \longrightarrow \text{Al}_2\text{O}_3$

Concentration of AI, Na, K over time after adding ASK into SKE in (a) air atmosphere and (b) argon atmosphere

Apparatus

Oxygen removal efficiency

- All intruded oxide ions can be removed in molten salts containing aluminium chloride.
 - 0.504 g of ASK was added into 10 g of SKE at 700 °C. Na₂O was then added gradually.
 - After each addition, the molten salt was stirred for 5 minutes and analyzed every 20 minutes thereafter.
 - Oxygen removal efficiency (%) = [Removed O (mol)/ O input (mol)]*100.

Na ₂ O input (mg)	O input (mol)	Al conc (wt%)	Reacted Al (estimation, mol)	Reacted Al (experiment, mol)	Removed O (mol)	O removal efficiency (%)
0	0	0.67273	-	-	-	-
71.1	0.00128	0.44501	8.53333E-4	8.8748E-4	0.00133	104.0
151.4	0.00273	0.22227	0.00182	0.00175	0.00263	96.4
181.7	0.00328	0.104	0.00219	0.00222	0.00332	101.3
201.9	0.00364	0.04357	0.00243	0.00245	0.00368	101.0
222.7	0.00402	0.00586	0.00268	0.0026	0.0039	96.9

Concentration of AI and calculated O removal efficiency in NaCI-KCI-AICI₃ molten salt at 700 °C

Ce study as a uranium surrogate

Oxychlorides are unstable in molten salt at 700 °C.

- ~ 0.018 g of Na₂O was added into 10.05 g of NaCl-KCl-CeCl₃ (SKA, 0.135 mol% of CeCl₃) and 10.55 g of NaCl-KCl-AlCl₃-CeCl₃ (SKAC, 1.59 mol% of AlCl₃ and 0.13 mol% of CeCl₃).
- CeOCI redox peak wasn't observed suggesting that CeOCI thermally decomposed into CeO₂ rapidly.

Ce study as a uranium surrogate

Al₂O₃ disperses in molten salt within small particle size at 700 °C.

- In OCP data, discrete peaks were observed in molten salt containing aluminium, suggesting that Al₂O₃ disperses in molten salt.
- The size of alumina particles seem to be very small. (Al₂O₃ density: 3.8 g/cm³, NaCl-KCl density at 700 °C: 1.6 ~ 1.7 g/cm³).
- The characteristics of alumina formed in the molten salt environment help alleviate concerns about pipe blockage and local overheating.

OCP of SKC and SKAC with addition of Na_2O

Reaction with cerium oxo-species

Aluminium chlorides react with cerium oxo-species forming Al₂O₃

- Cerium oxide and cerium oxychloride were used as surrogates for uranium oxide and uranium oxychloride.
- The reacted ratio of CeOCI/CeO₂ in the salt containing aluminum chloride (SKA) was higher than that in the salt without aluminum chloride (SKE).
- $\circ~$ The reaction mechanism between aluminium chloride and oxygen is thought to be 2Al^{3+} + 3O^{2-} \rightarrow Al_2O_3

Inducing oxygen in Eu²⁺/Eu³⁺ redox system

- The addition of aluminium chloride doesn't affect main redox couple's redox potential significantly.
 - 0.0306 g of AlCl₃-NaCl-KCl (ASK, 48.2-33.4-18.4 mol%) was added into 10.5 g of NaCl-KCl-EuCl₃ (1.29 mol%) at 700 °C, resulting in a final [Eu]/[Al] molar ratio of 10.
 - The observed peak potential difference (ΔEp) was lower than the predicted value, likely due to a high background current and the presence of impurities.

Redox peak	Reaction
l _a , l _c	AICl ₄ - associated
II _a , II _c	Eu³++e⁻ ↔ Eu²+
III _c	Impurity

Peak potential difference

Salt system	ΔΕ _p (V)
NaCl-KCl-EuCl ₃ (theoretical)	>0.19
NaCl-KCl-EuCl ₃	0.12
NaCI-KCI-EuCl ₃ -AICl ₃	0.13

Redox reactions

Inducing oxygen in Eu²⁺/Eu³⁺ redox system

Intruded oxides significantly affect redox potential of main redox species.

- Intruded oxides react with Eu to form Eu_2O_3 , reducing the concentration of soluble Eu in molten salt.
- The ratio of Eu³⁺/Eu²⁺ can be calculated from peak potential difference.
- Intruded O²⁻ evokes highly reducing environment, opposed to O₂, resulting in increasing Eu²⁺ ratio.

Calculated concentration ratio of Eu³⁺ to Eu²⁺ via peak potential difference [15]

Na ₂ O input (g)	ΔΕ _ρ (V)	$\frac{\mathbf{RT}}{\mathbf{nF}}\Delta\mathbf{E_p}$	$\frac{C_{Eu}^{3+}}{C_{Eu}^{2+}}\sqrt{\frac{D_{Eu}^{3+}}{D_{Eu}^{2+}}}$	$\frac{C_{Eu}^{3+}}{C_{Eu}^{2+}}$
0.0208	0.272969	3.26	0.306	2.39
0.0412	0.264381	3.15	2.63	2.07
0.0612	0.198132	2.36	2.28	0.278

Summary and future work

- Aluminium chloride is highly effective removing oxygen intruded (O₂-) or contacting (O₂) with molten salt.
- In molten salt reactors, oxygen scavenger should compete with UO₂.
 - Oxychlorides seem to be not stable at high temtperature (~700 °C), which converts to oxide rapidly.
- Aluminium chloride has potential that can convert uranium oxides to chlorides.
 - Effectively reacted with cerium oxide forming aluminium oxide with a small particle size.
 - $\circ \quad 3UO_2 + 4AICI_3 \rightarrow 3UCI_4 + 2AI_2O_3 \ (\Delta G^0_{973K} = -185 \text{ kJ/mol.})$
 - The efficiency of aluminum chloride in converting uranium oxides (UO₂, U₃O₈, UO₃) to uranium chlorides will be assessed.
- Intruded oxygen can not only reduce the concentration of uranium, but also change its redox potential (U³⁺/U⁴⁺).
 - The effect of aluminum chloride on maintaining the redox potential will be evaluated.
- From a corrosion perspective, introducing a small amount of bubbling AICl₃ in molten salt reactors may help mitigate oxygen-induced corrosion.

THANK YOU