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1. Introduction 
 

Recently, the design and licensing of Small Modular 
Reactors (SMRs) have been actively pursued worldwide. 
In South Korea, the i-SMR is being developed by 
leveraging the advantages of Passive Safety Systems 
(PSSs), based on the design experience of SMART100. 
Meanwhile, concerns have been raised regarding the 
reliability of PSS when performing Probabilistic Safety 
Assessment (PSA) for SMR designs. Although PSS 
ensures safety by relying on natural forces and low -
driving force, this characteristic makes it susceptible to 
not only mechanical or component failures but also 
functional failures. While mechanical failures can be 
analyzed using conventional assessment methods, 
functional failures require an analysis of initial 
conditions and the behavior of thermal-hydraulic 
variables, necessitating a quantitative evaluation. 

To quantify the functional failure probability of PSS, 
previous studies have employed methods such as REPAS, 
RMPS, and APSRA. Notably, unlike REPAS and RMPS, 
the APSRA method employs various techniques and 
focuses on failure points to generate a failure surface, 
which is then used to quantify the functional failure 
probability of PSS [1]. However, since the functional 
failure probability of PSS is extremely low, the high 
computational cost of thermal-hydraulic analysis 
required to generate the failure surface remains a major 
challenge. 

Moreover, once the failure surface is generated, Monte 
Carlo (MC) simulations can be a powerful tool for 
estimating the functional failure probability of PSSs. 
However, in practice, since the functional failure 
probability of PSSs is often very low, a large number of 
samples is required to ensure sufficient reliability [2]. 

This study aims to minimize computational costs 
while ensuring sufficient reliability in the quantitative 
assessment of functional failure probability. To achieve 
this, the 'principle of superposition' will be applied to 
perform only a small number of simulations based on 
initial variables, and a predictive technique will be used 
to estimate the plant's state to generate the failure surface. 
Additionally, an Importance Sampling-based MC 
method will be employed to achieve a more efficient 
failure probability assessment. The case study will focus 
on the Passive Auxiliary Feedwater System (PAFS) of a 
pressurized water reactor-type SMR. 

 
 

2. Previous Study 
 

In previous studies, the quantification of the functional 
failure probability of PSS aimed to address the issues of 
time and computational cost associated with predicting 
the state of a power plant under various initial conditions. 
To achieve this, it was assumed that the principle of 
superposition is valid, allowing for a more efficient 
analysis of system performance variations [3]. 

Based on this assumption, the power plant system is 
modeled, with thermal-hydraulic variables 𝑉௜ 
influencing system performance S୧ or 𝑓(𝑉௜). The overall 
system state S୘  is defined as the sum of the nominal 
performance S୬୭୫୧୬ୟ୪ and the variations ∆S୧  caused by 
individual variable changes. According to the 
superposition, the total performance variation S୘ can be 
expressed as the sum of the individual variable variations, 
as shown in Equation (1). 
 

S୘ =  S୬୭୫୧୬ୟ୪ + ∑ ∆S୧
୬
୧ୀଵ   (1) 

 
Since the uncertainties of key variables related to PSS 

tend to follow specific probability distributions, this 
study also establishes the probability distributions of 
each variable in a similar. Instead of directly computing 
the probability distribution of all variables, a sensitivity 
analysis is conducted using the standard deviation 𝜎 to 
quantitatively express the variability of each variable. 

To quantify the impact of the standard deviation on 
system changes, a specific function Equation (2) is 
applied. This function allows for a systematic assessment 
of how variations in input parameters influence overall 
system performance, providing a more efficient 
approach to analyzing uncertainty in PSS functionality. 

 

∆𝒇(𝑽𝒊) =  
𝒇(𝝁ା𝒏𝝈)ି𝒇(𝝁ି𝒎𝝈)

(𝒏ି𝒎)𝝈
   (2) 

 
 Assuming that power plant performance variations 

follow the superposition within a specific range, 
interpolation was utilized to predict performance 
changes based on existing data. As illustrated in Figure 
1, this approach enables performance prediction using 
three initial variables: Emergency Cooling Tank (ECT) 
temperature, ECT water level, and PAFS injection pipe 
diameter. By leveraging interpolation, the study 
effectively reduces computational costs while 
maintaining accuracy in estimating system behavior 
under different initial conditions. In figure 2, the black 
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line represents the performance variation due to a single 
variable, while the red line indicates the performance 
variation based on the superposition. By utilizing this 
approach, a deterministic analysis was conducted for 
only seven single-variable cases, allowing for the 
prediction of 729 different scenarios. This significantly 
reduces computational costs while maintaining accuracy 
in assessing system performance variations. 
 

 
Figure. 1 Performance variation prediction with superposition 
 

3. Methodology 
 
3.1. Generate a failure surface  
 

In the previous study, the principle of superposition 
and interpolation were utilized to predict the power plant 
state based on initial variables. Building upon this, the 
present study aims to generate a failure surface. 

In the functional failure analysis of the PSS, the failure 
surface serves as a useful tool to enhance computational 
efficiency and determine success or failure. However, 
due to the nature of the PSS, directly applying an Event 
Tree (ET), which classifies states into a simple binary 
success/failure, is challenging. Therefore, applying 
traditional PSA methods requires establishing a 
reasonable margin. The way the failure surface is defined 
significantly influences uncertainty, which poses 
limitations in algorithmic representation and 
generalization. Thus, this study seeks to explain the 
failure surface generation process using an example with 
two initial variables and to derive a more reasonable 
failure surface by incorporating the validated principle of 
superposition as a margin. 

The performance variation is predicted, and the failure 
surface is described using two variables, V1 and V2. If the 
principle of superposition is verified for the observed 
values of V1 and V2 and is determined to be within an 
acceptable error range, the predicted values for V1 and 
V2 are estimated using the principle of superposition. 

Next, when generating predicted values through 
probabilistic analysis based on observed values from 
deterministic analysis, the sensitivity range 
corresponding to the standard deviation of the variable 
Vi is used, as shown in Figure 2. In the example involving 
two variables, the deterministic analysis sensitivity is 
evaluated using the nominal value and its variations, 
specifically at 𝜇 − 𝑚𝜎, 𝜇, 𝜇 + 𝑛𝜎 which are represented 

by the black lines. Meanwhile, in the probabilistic 
analysis, if k represents the sensitivity interval, the 
interval is determined based on the analyst's judgment, 
using a range of ±k𝜎, while also utilizing interpolation 
for estimation. 
 

 
Figure. 2 PDF of variables according to the analysis interval 

 
This method involves using actual simulation cases 

(deterministic analysis) and predicted cases 
(probabilistic analysis) while utilizing sensitivity 
intervals in the variable space to generate a more realistic 
failure surface, as illustrated in Figure 3. As the number 
of predicted cases increases, this approach mitigates 
conservatism, leading to a more practical failure surface. 

However, while reducing conservatism can help in 
minimizing uncertainty, it may pose limitations in 
defining the failure surface. Additionally, since this 
method is based on the failure surface generation from 
the superposition, as established in previous research, the 
values used to validate the principle of superposition will 
be applied to define the failure surface margin. 
 

 
Figure. 3 Example of failure surface with two variables 

 
3.2. Quantification with the Importance Sampling 
 

Once the failure surface is generated, MC sampling is 
performed to randomly sample a comprehensive set of 
variables. The functional failure probability 𝑷𝒇𝒂𝒊𝒍𝒖𝒓𝒆 
obtained through the MC simulation is expressed as 
follows in Equation (3). 
 

𝑷𝒇𝒂𝒊𝒍𝒖𝒓𝒆 =  
𝟏

𝑵
 ∑ 𝑰 (𝑺𝑲 ≥ 𝑺𝒇𝒂𝒊𝒍𝒖𝒓𝒆)𝑵

𝑲ୀ𝟏   (3) 
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In the quantification process, random sampling was 

performed based on the distributions of the previously 
defined variables and the generated failure surface. 
Given the characteristics of PSS and the specific case 
study, the probability of failure was found to be very 
small, making it difficult to determine the convergence 
region for probability estimation. Therefore, Importance 
Sampling was employed to focus on specific regions. 

Importance sampling is a method used to efficiently 
estimate extremely small failure probabilities. While 
conventional MC simulation evaluates results through 
random sampling that directly follows the original 
variable distributions, Importance Sampling modifies the 
parameters of the initial variable distributions to 
concentrate samples near the failure surface. The 
sampled results are then adjusted by applying weights to 
correct the estimation. 

Equation (4) represents the failure probability 
estimation formula, illustrating the process of computing 
failure probability using weighted Importance Sampling. 
The failure probability is calculated as the weighted sum 
of failure occurrences divided by the total sum of weights. 
In other words, the probability of the failure region is 
corrected based on the results sampled from the 
importance distribution. The numerator accumulates the 
weights of the samples corresponding to the failure 
region, while the denominator sums the total weights of 
all samples, thereby enabling the estimation of the failure 
probability in the actual probability distribution. 
 

 𝐏𝐟𝐚𝐢𝐥𝐮𝐫𝐞 =  
∑ 𝐰𝐞𝐢𝐠𝐡𝐭𝐢∙𝐟𝐚𝐢𝐥𝐮𝐫𝐞𝐢

𝟏𝟎𝐧
𝐢స𝟏

∑ 𝐰𝐞𝐢𝐠𝐡𝐭𝐢
𝟏𝟎𝐧
𝐢స𝟏

  (4) 

 
Equation (5) represents the formula for calculating the 

weight ω(x) in Importance Sampling, which is derived 
from the original probability distribution and the 
importance distribution's Probability Density Function 
(PDF). 

Here, the numerator is the PDF of the original 
probability distribution 𝑵(𝝁, 𝝈𝟐) before modification, 
while the denominator is the PDF of the modified 
probability distribution 𝑵൫𝝁, 𝛔𝒊

𝟐൯ after the change. By 
taking the ratio of these PDFs, the probabilistic 
contribution of each sample under the original 
distribution is adjusted accordingly. 
 

𝛚(𝐱) =   

𝟏

ඥ𝟐𝛑𝛔𝟐
 𝒆𝒙𝒑(ି

ష(𝐱ష𝛍)𝟐

𝟐𝛔𝟐 )

𝟏

ඥ𝟐𝛑𝛔𝟐
 𝒆𝒙𝒑(ି

ష(𝐱ష𝛍)𝟐

𝟐𝛔𝐢
𝟐 )

            (5) 

 
4. Case Study 

 
The method presented in Chapter 3 was applied to the 

case study. The PSS analyzed in this study is the PAFS 
of a hypothetical SMR model using a helical heat 
exchanger, and the MARS-KS thermal-hydraulic code 
was used. To apply the existing binary ET, this study 
defines a specific scenario of the Complete Loss Of Flow 

(CLOF) accident, in which the steam generator pressure 
fails to reach a specific pressure within a certain time [4]. 

The key initial variables were selected based on the 
PAFS of APR+, including the ECT temperature, ECT 
water level, and PAFS injection pipe diameter [5]. A 
truncated normal distribution, where the probability 
density is defined only within a specific range, was used. 
The variability of these three parameters was defined as 
-4 sigma, nominal value, and +4 sigma. By combining 
the number of variables and sensitivity analysis levels, a 
total of 27 cases were analyzed. 

The observed values obtained from the deterministic 
analysis were compared with the predicted values from 
the probabilistic analysis, and the Root Mean Square 
Error (RMSE) and the R² were calculated. This analysis 
confirmed that the principle of superposition is 
reasonably maintained within a specific range. Using this 
approach, 729 probabilistic cases were predicted, which 
were then used to generate a failure surface. 

Various methods can be used to define a failure 
surface. In this case study, the Convex Hull approach was 
employed to generate the smallest convex polygon or 
convex polyhedron that encloses the boundary point set. 
The process of generating the convex hull, a reasonable 
margin for success/failure was applied by using the R² 
value as the failure criterion. The points that constitute 
the convex polygon are shown in Table 1. 

 
Table 1. Boundary points for Convex Hull 

Point ECTT (K) ECTL (m) PAFSA (m2) 

1 357.15 12.8 0.42918 

2 357.15 13.9 0.42918 

3 309.15 13.9 0.42918 

4 309.15 12.8 0.42918 

5 357.15 12.8 0.018394 

6 357.15 13.9 0.018394 

7 348.15 13.9 0.018394 

8 348.15 12.8 0.018394 

9 348.15 12.8 0.26594 

10 348.15 13.9 0.26594 

11 309.15 13.9 0.26594 

12 309.15 12.8 0.26594 

 
In other words, the failure surface is defined by 

constructing the minimal convex shape that encloses the 
given 12 boundary points, as shown in Figure 4. 
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Figure 4. Failure surface with Convex Hull 

 
To perform Importance Sampling in the quantification 

process based on the failure surface, the nominal values 
and distributions of the initially defined variables were 
adjusted, as shown in Table 2, so that more samples are 
positioned near the failure surface. Subsequently, 
weights were applied to correct the adjusted sampling 
distribution. 
 

Table 2. Parameter modification for Importance Sampling 

Variables Random sampling Importance sampling 

𝑬𝑪𝑻𝑻  (313.15, 62) N (333.15, 122) 

𝑬𝑪𝑻𝑳 N (9.5, 1.22) N (11.05, 1.22) 

𝑷𝑰𝑷𝑬𝑨 
N (0.030656, 

0.003052) 
N (0.030656, 
0.0061082) 

 
Using this approach, Importance Sampling was 

performed 10଼ times to estimate the failure probability 
of the PAFS in a hypothetical SMR under a specific 
CLOF accident, with a total of 30 iterations conducted. 
As a result, the functional failure probability of the PAFS 
was estimated to be  8.33 × 10ିଵଵ  within the 95% 
confidence interval of 2.85 × 10ିଵଵ ,  1.53 × 10ିଵ଴ . 
This result is a calibrated value for the case study, so 
caution is needed in its interpretation. 

 
5. Conclusion 

 
This study focuses on generating failure surfaces 

necessary for quantifying the functional failure 
probability of the PSS by leveraging superposition, 
thereby reducing computational time in the 
quantification process, and applying Importance 
Sampling to minimize sampling time while ensuring 
sufficient reliability. By utilizing the proposed approach, 
it is expected that a Boolean logic-based Fault Tree (FT) 
can be applied within a reasonable computational cost, 
similar to existing international methodologies, as 
illustrated in Figure 5. 

 
Figure 5. Application of functional failure to FT 

 
However, this study has limitations in considering 

uncertainties during the failure surface generation 
process. Additionally, if the importance distribution 
significantly differs from the actual distribution, bias 
may occur during the sampling process, posing a risk of 
reduced accuracy in the results. Furthermore, quantifying 
the failure probability of the PSS remains a challenging 
issue due to variations in thermal-hydraulic conditions 
depending on the accident type. Moreover, there is 
currently no established method to compare and validate 
the quantified results of functional failure probability. A 
standardized methodology for practical application is 
lacking, and while this study adopted a conservative 
approach based on existing methodologies, its 
significance lies in presenting an efficient approach for 
estimating the functional failure probability of SMRs. 
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