
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 22-23, 2025 

 

 

 

 An Approach Based on Deep Learning for Estimating Accident Consequences of 

Radioactive Material Releases in Severe Accident Scenarios 

 
Jiyeong Seo a, Kyungho Jin b, Sung-yeop Kim b Jaehyun Cho a* 

a Chung-Ang Univ., 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea 
b Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057, Republic of 

Korea 
*Corresponding author: jcho@cau.ac.kr 

 

*Keywords : Deep learning, Radiological source term, Offsite consequence analysis, Risk assessment, Level 3 PSA 

 

 

1. Introduction 

 

Risk assessment plays a fundamental role in ensuring 

the safety and reliability of nuclear power plants (NPPs) 

by identifying vulnerabilities, quantifying risks, and 

supporting the development of appropriate mitigation 

strategies. In particular, the analysis of offsite 

radiological consequences following severe accidents 

has gained significant attention, especially after the 

Fukushima Daiichi NPP accident, which highlighted the 

critical importance of realistic consequence modeling 

and emergency preparedness [1]. Probabilistic Safety 

Assessment (PSA), typically divided into Levels 1, 2, 

and 3, is widely used for evaluating plant safety, with 

Level 2 PSA focusing on source term estimation and 

Level 3 PSA assessing radiological impacts on the 

surrounding population [2]. 

However, conventional consequence analysis using 

tools such as MACCS requires considerable 

computational resources and time, making challenges for 

real-time application and extensive scenario analysis. To 

address these limitations, this study proposes a data-

driven approach using deep learning techniques to 

develop a surrogate model, referred to as the Accident 

Consequence Estimator. By analyzing the correlation 

between radiological source terms and offsite 

consequences, the model aims to enable swift and 

accurate estimation of population-weighted individual 

risk (PWIR), thereby supporting risk-informed decision-

making and emergency response [3,4]. 

  

2. Methods and Results 

 

A deep learning model was developed and evaluated 

for predicting radiological consequences of severe 

accidents. An application study was also conducted to 

assess the effectiveness of Severe Accident Guidelines 

(SAGs) in consequence mitigation. 

 

2.1 Methodology 

 

In this study, supervised learning-based regression 

analysis was conducted using a deep learning model. The 

input data comprised source term results generated by 

MAAP5 simulations for severe accident scenarios 

defined in Level 2 PSA, while the output data 

represented accident consequences resulting from the 

environmental release of source terms, analyzed using 

MACCS as part of Level 3 PSA. To perform this analysis, 

a deep learning regression model was developed and 

implemented in Python. 

 

2.2 Deep learning model 

 

The deep learning model was trained and tested on 658 

severe accident scenarios, selected from 690 cases that 

account for 99% of the total accident frequency for 

OPR1000 [5]. The input data had a shape of (658, 2194, 

26), where 2194 time steps correspond to the longest 

sequence among all scenarios; shorter sequences were 

padded for uniformity. The 26 input variables included 

the emission amounts of 25 major radionuclides (e.g., Xe, 

I, Cs, Cm), along with time information corresponding to 

the core exit temperature (CET) peak, which also 

represents the Severe Accident Management Guidelines 

(SAMG) entry point. The output data had a shape of (658, 

1) and represented the PWIR associated with cancer 

fatality. Both input and output data were normalized 

using min-max scaling to enhance model stability and 

performance. A detailed overview of the dataset is 

provided in Table I. 

 
Table I: Input and output data for deep learning model 

 Input Output 

Description 

Emission 

amounts of 25 

major nuclides, 

including Xe, I, 

Cs, …, Cm 

PWIR(Populati

on-weighted 

individual risk) 

related to cancer 

fatality 

Data format 
Multivariate 

time series 

Univariate 

single 

Data shape (658, 2194, 26) (658, 1) 

Special notes 

Addition of 

core exit 

temperature 

(CET) maximum 

arrival time 

information 

 

 

To effectively process multivariate time-series data, a 
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Convolutional Neural Network (CNN) architecture was 

employed. Prior to model training, down sampling was 

applied to reduce the number of time steps from 2194 to 

1097, thereby improving computational efficiency while 

preserving essential temporal features. In addition, 

positional encoding was incorporated to enhance the 

model performance to recognize temporal patterns, 

effectively expanding the input feature dimension. This 

technique, adapted from Transformer architectures, 

assigns each time step a unique positional embedding 

computed via sine and cosine functions, enabling the 

model to better capture temporal dependencies. As a 

result of these preprocessing steps, the final input shape 

for the CNN model was (1097, 39). 

The overall architecture of the proposed deep learning 

model is summarized in Table II. The model comprises 

five Conv1D layers, each followed by MaxPooling1D 

layers, and subsequently Fully Connected (Dense) layers. 

The first Conv1D layer utilizes 64 filters, with the 

number of filters progressively reduced in subsequent 

layers (64 → 32 → 16 → 8 → 4), while dilation rates 

increase to capture multiscale temporal features. To 

ensure causality and prevent future data leakage, causal 

padding was applied in all Conv1D layers. Each 

convolutional layer is followed by a max pooling 

operation, which reduces the dimensionality of feature 

maps, decreases computational load, and mitigates 

overfitting. The resulting feature maps are flattened and 

passed through Dense layers comprising 256, 64, and 16 

neurons, respectively, before reaching the final output 

layer. Additionally, a Dropout layer with a rate of 0.38 

was included after the first Dense layer to further reduce 

the risk of overfitting and improve model generalization. 

 

Table II: Architecture of the CNN-based deep learning 

model 

 Layers 
Output 

shape 

Configurations 

Input data (1097, 39) 

Hidden layer 

1: Conv1D 
(1097, 64) 

MaxPooling

1D 
(548, 64) 

Hidden layer 

2: Conv1D 
(548, 32) 

MaxPooling

1D 
(274, 32) 

Hidden layer 

3: Conv1D 
(274, 16) 

MaxPooling

1D 
(137, 16) 

Hidden layer 

4: Conv1D 
(137, 8) 

MaxPooling

1D 
(68, 8) 

Hidden layer 

5: Conv1D 
(68, 4) 

MaxPooling (34, 4) 

1D 

Flatten layer (136) 

Hidden layer 

6: Dense 
(256) 

Dropout 

(dropout rate = 

0.38) 

(256) 

Hidden layer 

7: Dense 
(64) 

Hidden layer 

8: Dense 
(16) 

Output layer (1) 

Activation 

function 
ReLU, swish 

Optimizer 
Adam optimizer  

(learning rate = 1.2E-04) 

Cost function Mean squared error 

  

The model was trained using the Adam optimizer with 

an initial learning rate of 0.00012, and early stopping was 

applied to terminate training when the validation loss no 

longer improved. Additionally, ReduceLROnPlateau, a 

learning rate scheduler that reduces the learning rate 

when validation performance plateaus, was employed to 

dynamically adjust the learning rate and enhance training 

efficiency. To improve the stability and reliability of the 

predictions, an ensemble learning approach was adopted, 

wherein ten identical models were trained independently 

and their outputs averaged to yield the final prediction. 

For model training, the dataset was partitioned into 

training (85%) and test (15%) sets. Within the training 

set, 85% of the data was used for training, while the 

remaining 25% was allocated for validation to assess 

generalization performance. This data partitioning 

strategy, illustrated in Fig. 1, resulted in 420 training 

samples, 140 validation samples, and 98 test samples. 

Such a structured data split was essential in minimizing 

overfitting and ensuring consistent predictive 

performance. 

 

 
 

Fig. 1. Data partitioning scheme for training, validation, and 

testing 

 

2.3 Model Performance Evaluation 
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To evaluate the predictive performance of the deep 

learning model, the predicted PWIR values were 

compared against the reference results calculated using 

MACCS. Fig. 2 illustrates this comparison of a randomly 

selected subset of 20 out of the 98 test scenarios, 

presented on both linear and logarithmic scales.  

The model’s performance was quantitatively assessed 

using the mean squared error (MSE), defined as: 

(1) 𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1  

where 𝑦𝑖 denotes the true PWIR value and 𝑦𝑖̂ represents 

the predicted value. The model achieved an MSE of 

approximately 0.0002, indicating a high level of 

agreement between the predicted and actual outcomes. 

  As shown in (a), the linear scale plot demonstrates 

that the model accurately captures the overall trend in 

PWIR predictions. However, due to the presence of high-

fatality scenarios such as the 10th scenario, which 

exhibits the highest fatality rate, the PWIR values for 

low-fatality scenarios appear visually compressed, 

limiting detailed comparison. To address this issue, (b) 

presents the same data on a logarithmic scale, enabling 

more intuitive visualization across a wide range of PWIR 

magnitudes and improving clarity for low-fatality 

scenarios. 

As observed from the plots, the model tends to slightly 

overestimate or underestimate PWIR values across 

different scenarios. Overestimation can lead to 

unnecessary conservatism in risk assessment, while 

underestimation may result in overlooking actual risks. 

Therefore, minimizing prediction errors is essential to 

ensure accurate risk assessment and support practical 

decision-making. 

 

 
(a) Linear scale 

 

 
(b) Logarithmic scale 

Fig. 2. PWIR predictions for 20 out of 98 test scenarios 

 

2.4 Application study using additional SAG data 

 

To assess the effectiveness of SAGs in mitigating 

radioactive release and improving accident 

consequences, an application study was conducted using 

additional SAG data. SAGs include specific Severe 

Accident Management (SAM) strategies aimed at 

preventing or mitigating severe accident phenomena. 

Such strategies encompass injection into the steam 

generators (SGs), depressurization of the reactor coolant 

system (RCS), injection into the RCS, injection into the 

containment, reduction and control of fission product (FP) 

release, and control of containment conditions including 

hydrogen concentration. Among these, SAG-01 

(Injection into the SGs), SAG-02 (Depressurization of 

the RCS), and SAG-03 (Injection into the RCS) were 

selected for this study as key strategies for accident 

mitigation [6]. 

 The study focused on an accident scenario 

corresponding to STC5, one of the Source Term 

Categories (STCs) defined for OPR1000, whose 

representative sequence is a station blackout (SBO) 

event. This scenario involves decay heat removal using 

the turbine-driven auxiliary feedwater system, with 

successful secondary-side heat removal. However, due to 

the failure of safety injection, core damage occurs, and it 

is assumed that the reactor containment spray system is 

activated within one hour after reactor vessel failure. 

For analytical clarity in radionuclide release 

assessment, the STC5-SBO scenario without spray 

activation was considered as the base case (SBO, Case 

0). Additional cases were established by applying 

different SAG strategies: Case 1 includes only SAG-01, 

Case 2 applies SAG-01 and SAG-02, Case 3 implements 

only SAG-02, Case 4 applies SAG-02 and SAG-03, and 

Case 5 incorporates SAG-01, SAG-02, and SAG-03 

together. The configuration of each case and the 

corresponding SAG activation timings are summarized 

in Table III. A total of 16 simulations were conducted for 

each case by varying the SAG activation timing from 0.5 

hours to 2 hours at 0.1-hour intervals, allowing for 

sensitivity analysis of accident mitigation effectiveness 

with respect to SAG implementation timing. 

Fig. 3 illustrates the relative reduction in accident 

consequences for different SAG applications. To 

enhance the robustness of the predicted outcomes, each 

SAG dataset, although originally comprising 16 

simulation cases, was processed by performing 10 

independent model training iterations and reporting their 

ensemble average. The SBO case without any mitigation 

was set as the 100% baseline, and the percentage 

reduction in PWIR was computed for each SAG 

application. The results indicate that SAG-02 alone 

provides the highest individual effectiveness, reducing 

PWIR by approximately 26.3%. The combination of 

SAG-02 and SAG-03 achieves the greatest overall 

mitigation effect, reducing consequences by about 27.3%. 

In comparison, SAG-01 alone reduces consequences by 

16.3%, and the combined application of SAG-01 and 

SAG-02 yields the same reduction (16.3%), indicating 
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no additional benefit from SAG-01 when SAG-02 is 

applied. Interestingly, the simultaneous application of all 

three strategies (SAG-01, SAG-02, and SAG-03) results 

in a 19.1% reduction, which is lower than the effect of 

SAG-02 alone or in combination with SAG-03. 

These findings highlight the importance of timely and 

appropriate SAG application in reducing the radiological 

impact of severe accidents. The study confirms that 

SAG-02 (Depressurization of the RCS) plays a crucial 

role in accident mitigation, and when combined with 

SAG-03 (Injection into the RCS), it provides the most 

significant consequence reduction. 

 

Table III: Configuration of SAG application cases and 

activation timings 

STC

5-SBO 

without 

spray 

No. of 

simulation 

case 

V2.SAG

-01 

time 

V3.SAG

-02 

time 

V4.SAG

-03 

time 

0 1 
OFF 

-100 

OFF 

-100 

OFF 

-100 

1 16 

ON 

0.5hr-

2hr 

OFF 

-100 

OFF 

-100 

2 16 

ON 

0.5hr-

2hr 

ON 

30minut

es after V2 

OFF 

-100 

3 16 
OFF 

-100 

ON 

0.5hr-

2hr 

OFF 

-100 

4 16 
OFF 

-100 

ON 

0.5hr-

2hr 

ON 

Same 

time with 

V3 

5 16 

ON 

0.5hr-

2hr 

ON 

30minut

es after V2 

ON 

Same 

time with 

V3 

 

 
Fig. 3. PWIR(Consequence) reductions depending on SAGs  

 

2.5 Discussion  

 

 The results presented in Fig. 3 suggest that the 

relationship between combinations of SAG strategies 

and the extent of PWIR reduction may not be strictly 

additive. While SAG-02 alone achieves substantial 

mitigation, adding SAG-01 does not appear to enhance 

effectiveness. In some cases, such as the combined 

application of all three strategies, the reduction is lower 

than that achieved by SAG-02 and SAG-03 together. 

These findings imply potential functional overlap or 

interference among certain SAGs, which can diminish 

overall effectiveness. Further investigation is needed to 

understand how different SAG strategies interact, 

complement, or counteract each other across various 

accident scenarios, supporting more targeted and 

efficient mitigation planning in severe accident 

management. 

 

3. Conclusions 

 

This study developed and evaluated a deep learning-

based regression model to predict offsite radiological 

consequences, quantified as PWIR, based on source term 

data from severe nuclear accident scenarios. The model, 

trained using MAAP5-generated source terms and 

MACCS-derived consequence data, demonstrated high 

predictive accuracy with a mean squared error (MSE) of 

approximately 0.0002. Visual comparison between 

predicted and actual PWIR values confirmed that the 

model reliably captured overall trends, although slight 

over- or underestimations were observed across different 

scenarios. Based on these tendencies, minimizing 

prediction errors is essential to ensure accurate risk 

assessment and support practical decision-making. 

Additionally, an application study using SAGs 

revealed that SAG-02 (Depressurization of the RCS) had 

the greatest individual effect in mitigating accident 

consequences. The combination of SAG-02 and SAG-03 

(Injection into the RCS) achieved the highest overall 

reduction in PWIR, while the inclusion of SAG-01 

(Injection into the SGs) offered limited additional benefit. 

These findings indicate that the mitigation effects of 

SAG combinations may not be strictly additive and 

highlight the need for further analysis to optimize SAG 

strategies based on scenario-specific effectiveness. 

Future research should explore these interactions across 

diverse accident conditions to enhance risk-informed 

emergency response and consequence management. 
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